Internal subprograms have explicit interfaces. If an internal subprogram has
an alternate return, we check its explicit interface. But we were not
putting the label values of alternate returns into the actual argument.
I fixed this by changing the definition of actual arguments to be able
to contain a common::Label and putting the label for an alternate return
into the actual argument.
I also verified that we were already doing all of the semantic checking
required for alternate returns and removed a "TODO" for this.
I also added the test altreturn06.f90.
Differential Revision: https://reviews.llvm.org/D94017
This patch adds a frontend action for emitting object files. While Flang
does not support code-generation, this action remains a placeholder.
This patch simply provides glue-code to connect the compiler driver
with the appropriate frontend action.
The new action is triggered with the `-c` compiler driver flag, i.e.
`flang-new -c`. This is then translated to `flang-new -fc1 -emit-obj`,
so `-emit-obj` has to be marked as supported as well.
As code-generation is not available yet, `flang-new -c` results in a
driver error:
```
error: code-generation is not available yet
```
Hopefully this will help communicating the level of available
functionality within Flang.
The definition of `emit-obj` is updated so that it can be shared between
Clang and Flang. As the original definition was enclosed within a
Clang-specific TableGen `let` statement, it is extracted into a new `let`
statement. That felt like the cleanest option.
I also commented out `-triple` in Flang::ConstructJob and updated some
comments there. This is similar to https://reviews.llvm.org/D93027. I
wanted to make sure that it's clear that we can't support `-triple`
until we have code-generation. However, once code-generation is
available we _will need_ `-triple`.
As this patch adds `-emit-obj`, the emit-obj.f90 becomes irrelevant and
is deleted. Instead, phases.f90 is added to demonstrate that users can
control compilation phases (indeed, `-c` is a phase control flag).
Reviewed By: SouraVX, clementval
Differential Revision: https://reviews.llvm.org/D93301
Add support for options -D and -U in the new Flang driver.
Summary of changes:
- Create PreprocessorOptions, to be used by the driver then translated
into Fortran::parser::Options
- Create CompilerInvocation::setFortranOpts to pass preprocessor
options into the parser options
- Add a dedicated method, Flang::AddPreprocessingOptions, to extract
preprocessing options from the driver arguments into the preprocessor
command arguments
Macros specified like -DName will default to definition 1.
When defining macros, the new driver will drop anything after an
end-of-line character. This is consistent with gfortran and clang, but
different to what currently f18 does. However, flang (which is a bash
wrapper for f18), also drops everything after an end-of-line character.
So gfortran-like behaviour felt like the natural choice. Test is added
to demonstrate this behaviour.
Reviewed By: awarzynski
Differential Revision: https://reviews.llvm.org/D93401
See OMP-5.0 2.19.5.5 task_reduction Clause.
To add a positive test case we need `taskgroup` directive which is not added hence skipping the test.
This is a dependency for `taskgroup` construct.
Reviewed By: clementval
Differential Revision: https://reviews.llvm.org/D93105
Co-authored-by: Valentin Clement <clementval@gmail.com>
See OMP-5.0 2.19.5.5 task_reduction Clause.
To add a positive test case we need `taskgroup` directive which is not added hence skipping the test.
This is a dependency for `taskgroup` construct.
Reviewed By: clementval
Differential Revision: https://reviews.llvm.org/D93105
After discussion in `D93482` we found that the some of the clauses were not
following the common OmpClause convention.
The benefits of using OmpClause:
- Functionalities from structure checker are mostly aligned to work with
`llvm::omp::Clause`.
- The unparsing as well can take advantage.
- Homogeneity with OpenACC and rest of the clauses in OpenMP.
- Could even generate the parser with TableGen, when there is homogeneity.
- It becomes confusing when to use `flangClass` and `flangClassValue` inside
TableGen, if incase we generate parser using TableGen we could have only a
single `let expression`.
This patch makes `OmpDistScheduleClause` clause part of `OmpClause`.
The unparse function for `OmpDistScheduleClause` is adapted since the keyword
and parenthesis are issued by the corresponding unparse function for
`parser::OmpClause::DistSchedule`.
Reviewed By: clementval, kiranktp
Differential Revision: https://reviews.llvm.org/D93644
After discussion in `D93482` we found that the some of the clauses were not
following the common OmpClause convention.
The benefits of using OmpClause:
- Functionalities from structure checker are mostly aligned to work with
`llvm::omp::Clause`.
- The unparsing as well can take advantage.
- Homogeneity with OpenACC and rest of the clauses in OpenMP.
- Could even generate the parser with TableGen, when there is homogeneity.
- It becomes confusing when to use `flangClass` and `flangClassValue` inside
TableGen, if incase we generate parser using TableGen we could have only a
single `let expression`.
This patch makes `OmpNoWait` clause part of `OmpClause`.
Reviewed By: clementval, kiranktp
Differential Revision: https://reviews.llvm.org/D93643
Use the TableGen feature to have enum values for clauses.
Next step will be to extend the MLIR part used currently by OpenMP
to use the same enum on the dialect side.
This patch also add function that convert the enum to StringRef to be
used on the dump-parse-tree from flang.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D93576
The behaviour triggered with this flag is consistent with `-fparse-only`
in `flang` (i.e. the throwaway driver). This new spelling is consistent
with Clang and gfortran, and was proposed and agreed on for the new
driver in [1].
This patch also adds some minimal logic to communicate whether the
semantic checks have failed or not. When semantic checks fail, a
frontend driver error is generated. The return code from the frontend
driver is then determined by checking the driver diagnostics - the
presence of driver errors means that the compilation has failed. This
logic is consistent with `clang -cc1`.
[1] http://lists.llvm.org/pipermail/flang-dev/2020-November/000588.html
Differential Revision: https://reviews.llvm.org/D92854
This better matches the rest of the infrastructure, is much simpler, and makes it easier to move these types to being declaratively specified.
Differential Revision: https://reviews.llvm.org/D93432
Remove the OpenMP clause information from the OMPKinds.def file and use the
information from the new OMP.td file. There is now a single source of truth for the
directives and clauses.
To avoid generate lots of specific small code from tablegen, the macros previously
used in OMPKinds.def are generated almost as identical. This can be polished and
possibly removed in a further patch.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D92955
This patch add some checks for the restriction on the routine directive
and fix several issue at the same time.
Validity tests have been added in a separate file than acc-clause-validity.f90 since this one
became quite large. I plan to split the larger file once on-going review are done.
Reviewed By: sameeranjoshi
Differential Revision: https://reviews.llvm.org/D92672
Elemental intrinsic function folding was not taking the lower
bounds of constant array arguments into account; these lower bounds
can be distinct from 1 when named constants appear as arguments.
LLVM bugzilla #48437.
Differential Revision: https://reviews.llvm.org/D93321
STORAGE_SIZE() is a standard inquiry intrinsic (size in bits
of an array element of the same type as the argument); SIZEOF()
is a common extension that returns the size in bytes of its
argument; C_SIZEOF() is a renaming of SIZEOF() in module ISO_C_BINDING.
STORAGE_SIZE() and SIZEOF() are implemented via rewrites to
expressions; these expressions will be constant when the necessary
type parameters and bounds are also constant.
Code to calculate the sizes of types (with and without alignment)
was isolated into Evaluate/type.* and /characteristics.*.
Code in Semantics/compute-offsets.* to calculate sizes and alignments
of derived types' scopes was exposed so that it can be called at type
instantiation time (earlier than before) so that these inquiry intrinsics
could be called from specification expressions.
Differential Revision: https://reviews.llvm.org/D93322
Remove resolved & moot TODO comments in Common/, Parser/,
and Evaluate/. Address a pending one relating to parsing
ambiguity in DATA statement constants, handling it with
symbol table information in Semantics and adding a test.
Differential Revision: https://reviews.llvm.org/D93323
Before this patch, the Restorer depended on copy elision to happen.
Without copy elision, the function ScopedSet calls the move constructor
before its dtor. The dtor will prematurely restore the reference to the
original value.
Instead of relying the compiler to not use the Restorer's copy
constructor, delete its copy and assign operators. Hence, callers cannot
move or copy a Restorer object anymore, and have to explicitly provide
the reset state. ScopedSet avoids calling move/copy operations by
relying on unnamed return value optimization, which is mandatory in
C++17.
Reviewed By: klausler
Differential Revision: https://reviews.llvm.org/D88797
From OMP 5.0 [2.17.8]
Restriction:
If memory-order-clause is release,acquire, or acq_rel, list items must not be specified on the flush directive.
Reviewed By: kiranchandramohan, clementval
Differential Revision: https://reviews.llvm.org/D89879
Patch implements restrictions from 2.17.7 of OpenMP 5.0 standard for atomic Construct. Tests for the same are added.
One of the restriction
`OpenMP constructs may not be encountered during execution of an atomic region.`
Is mentioned in 5.0 standard to be a semantic restriction, but given the stricter nature of parser in F18 it's caught at parsing itself.
This patch is a next patch in series from D88965.
Reviewed By: clementval
Differential Revision: https://reviews.llvm.org/D89583
The semantic analysis of index-names of FORALL statements looks up symbols with
the same name as the index-name. This is needed to exclude symbols that are
not objects. But if the symbol found is host-, use-, or construct-associated
with another entity, the check fails.
I fixed this by getting the root symbol of the symbol found and doing the check
on the root symbol. This required creating a non-const version of
"GetAssociationRoot()".
Differential Revision: https://reviews.llvm.org/D92970
Update all reference from the specification to the new OpenACC 3.1
document.
Reviewed By: SouraVX
Differential Revision: https://reviews.llvm.org/D92120
Define Fortran derived types that describe the characteristics
of derived types, and instantiations of parameterized derived
types, that are of relevance to the runtime language support
library. Define a suite of corresponding C++ structure types
for the runtime library to use to interpret instances of the
descriptions.
Create instances of these description types in Semantics as
static initializers for compiler-created objects in the scopes
that define or instantiate user derived types.
Delete obsolete code from earlier attempts to package runtime
type information.
Differential Revision: https://reviews.llvm.org/D92802
Add couple of clause validity tests for the update directive and check for
the restriction where at least self, host or device clause must appear on the directive.
Reviewed By: sameeranjoshi
Differential Revision: https://reviews.llvm.org/D92447
This patch plugs many holes in static initializer semantics, improves error
messages for default initial values and other component properties in
parameterized derived type instantiations, and cleans up several small
issues noticed during development. We now do proper scalar expansion,
folding, and type, rank, and shape conformance checking for component
default initializers in derived types and PDT instantiations.
The initial values of named constants are now guaranteed to have been folded
when installed in the symbol table, and are no longer folded or
scalar-expanded at each use in expression folding. Semantics documentation
was extended with information about the various kinds of initializations
in Fortran and when each of them are processed in the compiler.
Some necessary concomitant changes have bulked this patch out a bit:
* contextual messages attachments, which are now produced for parameterized
derived type instantiations so that the user can figure out which
instance caused a problem with a component, have been added as part
of ContextualMessages, and their implementation was debugged
* several APIs in evaluate::characteristics was changed so that a FoldingContext
is passed as an argument rather than just its intrinsic procedure table;
this affected client call sites in many files
* new tools in Evaluate/check-expression.cpp to determine when an Expr
actually is a single constant value and to validate a non-pointer
variable initializer or object component default value
* shape conformance checking has additional arguments that control
whether scalar expansion is allowed
* several now-unused functions and data members noticed and removed
* several crashes and bogus errors exposed by testing this new code
were fixed
* a -fdebug-stack-trace option to enable LLVM's stack tracing on
a crash, which might be useful in the future
TL;DR: Initialization processing does more and takes place at the right
times for all of the various kinds of things that can be initialized.
Differential Review: https://reviews.llvm.org/D92783
This is part of a larger refactoring the better congregates the builtin structures under the BuiltinDialect. This also removes the problematic "standard" naming that clashes with the "standard" dialect, which is not defined within IR/. A temporary forward is placed in StandardTypes.h to allow time for downstream users to replaced references.
Differential Revision: https://reviews.llvm.org/D92435
There isn't a good reason for anything within IR to specifically reference any of the builtin operations. The only place that had a good reason in the past was AsmPrinter, but the behavior there doesn't need to hardcode ModuleOp anymore.
Differential Revision: https://reviews.llvm.org/D92448
When the same generic name is use-associated from two modules, the
generics are merged into a single one in the current scope. This change
fixes some bugs in that process.
When a generic is merged, it can have two specific procedures with the
same name as the generic (c.f. module m7c in modfile07.f90). We were
disallowing that by checking for duplicate names in the generic rather
than duplicate symbols. Changing `namesSeen` to `symbolsSeen` in
`ResolveSpecificsInGeneric` fixes that.
We weren't including each USE of those generics in the .mod file so in
some cases they were incorrect. Extend GenericDetails to specify all
use-associated symbols that are merged into the generic. This is used to
write out .mod files correctly.
The distinguishability check for specific procedures of a generic
sometimes have to refer to procedures from a use-associated generic in
error messages. In that case we don't have the source location of the
procedure so adapt the message to say where is was use-associated from.
This requires passing the scope through the checks to make that
determination.
Differential Revision: https://reviews.llvm.org/D92492
`GetTopLevelUnitContaining` returns the Scope nested in the global scope
that contains the given Scope or Symbol.
Use "Get" rather than "Find" in the name because "Find" implies it might
not be found, which can't happen. Following that logic, rename
`FindProgramUnitContaining` to `GetProgramUnitContaining` and have it
also return a reference rather that a pointer.
Note that the use of "ProgramUnit" is slightly confusing. In the Fortran
standard, "program-unit" refers to what is called a "TopLevelUnit" here.
What we are calling a "ProgramUnit" (here and in `ProgramTree`) includes
internal subprograms while "TopLevelUnit" does not.
Differential Revision: https://reviews.llvm.org/D92491
Add the semantic checks for the OpenMP 4.5 - 2.15.3.3 Private clause.
1. Pointers with the INTENT(IN) attribute may not appear in a private clause.
2. Variables that appear in namelist statements may not appear in a private clause.
A flag 'InNamelist' is added to the Symbol::Flag to identify the symbols
in Namelist statemnts.
Test cases : omp-private01.f90, omp-private02.f90
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D90210
This patch introduce the separate parser for the memory-order-clause from the general
OmpClauseList. This parser still creates OmpClause node and therefore can use all the feature
from TableGen and the OmpStructureChecker.
This is applied only for the Flush construct in this patch and it should be applied for
atomic as well.
This is the approach we disscussed several time during the weekly call.
Reviewed By: kiranchandramohan, sameeranjoshi
Differential Revision: https://reviews.llvm.org/D91839
Fortran defines "null-init" null pointer initializers as
being function references, syntactically, that have to resolve
to calls to the intrinsic function NULL() with no actual
arguments.
Differential revision: https://reviews.llvm.org/D91657
These includes have been deprecated in favor of BuiltinDialect.h, which contains the definitions of ModuleOp and FuncOp.
Differential Revision: https://reviews.llvm.org/D91572
COMPLEX negation, addition, subtraction, conversions of kind, and
equality/inequality were represented as component-wise REAL
operations. It turns out to be easier for lowering if we
do not split and recombine these COMPLEX operations, and it
avoids a potential problem with COMPLEX valued function calls
in these contexts. So add this suite of operations to the
typed expression representation in place of the component-wise
transformations, and support them in folding.
Differential revision: https://reviews.llvm.org/D91443
The implementation of Messages with forward_list<> makes some
nonstandard assumptions about the validity of iterators that don't
hold up with MSVC's implementation. Use list<> instead. The
measured performance is comparable.
This change obviated a distinction between two member functions
of Messages, and the uses of one have been replaced with calls
to the other.
Similar usage in CharBuffer was also replaced for consistency.
Differential revision: https://reviews.llvm.org/D91210
Avoid a spurious error message about a dummy procedure reference
in a specification expression by restructuring the handling of
use-associated and host-associated symbols.
Updated to fix a circular dependence between shared library
binaries that was introduced by the original patch.
Differential revision: https://reviews.llvm.org/D91286
The initial approach was to go with changing parser nodes from `std::list<parser::Name>` to `OmpObjectList`, but that might have lead to illegal programs.
Resolving the symbols inside `OmpAttributeVisitor`.
Fix a couple of `XFAIL` tests.
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D90538
Add the semantic checks for the OpenMP 4.5 - 2.15.4.1 copyin clause.
Resolve OpenMPThreadprivate directive since the list of items specified
in copyin clause should be threadprivate.
Test cases : omp-copyin01.f90, omp-copyin02.f90, omp-copyin03.f90,
omp-copyin04.f90, omp-copyin05.f90
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D89385
Ensure that character length is properly calculated for
actual arguments to intrinsics, and that source provenance
information is available when expression analysis calls
folding in cases where the length is invalid.
Differential revision: https://reviews.llvm.org/D90636
When the bounds of an implied DO loop in an array constructor are
constant, the index variable of that loop is considered a constant
expression and can be used as such in the items in the value list
of the implied DO loop. Since the KIND type parameter values of items
in the value list can depend on the various values taken by such an
index, it is not possible to represent those values with a single
typed expression. So implement such loops by taking multiple passes
over the parse tree of the implied DO loop instead.
Differential revision: https://reviews.llvm.org/D90494
This patch implements the first frontend action for the Flang parser (i.e.
Fortran::parser). This action runs the preprocessor and is invoked with the
`-E` flag. (i.e. `flang-new -E <input-file>). The generated output is printed
to either stdout or the output file (specified with `-` or `-o <output-file>`).
Note that currently there is no mechanism to map options for the
frontend driver (i.e. Fortran::frontend::FrontendOptions) to options for
the parser (i.e. Fortran::parser::Options). Instead,
Frotran::parser::options are hard-coded to:
```
std::vector<std::string> searchDirectories{"."s};
searchDirectories = searchDirectories;
isFixedForm = false;
_encoding(Fortran::parser::Encoding::UTF_8);
```
These default settings are compatible with the current Flang driver. Further
work is required in order for CompilerInvocation to read and map
clang::driver::options to Fortran::parser::options.
Co-authored-by: Andrzej Warzynski <andrzej.warzynski@arm.com>
Differential Revision: https://reviews.llvm.org/D88381