This patch replaces the JITDylib::DefinitionGenerator typedef with a class of
the same name, and adds support for attaching a sequence of DefinitionGeneration
objects to a JITDylib.
This patch also adds a new definition generator,
StaticLibraryDefinitionGenerator, that can be used to add symbols fom a static
library to a JITDylib. An object from the static library will be added (via
a supplied ObjectLayer reference) whenever a symbol from that object is
referenced.
To enable testing, lli is updated to add support for the --extra-archive option
when running in -jit-kind=orc-lazy mode.
llvm-svn: 368707
Currently shufflemasks get emitted as any other constant, and you end
up with a bunch of virtual registers of G_CONSTANT with a
G_BUILD_VECTOR. The AArch64 selector then asserts on anything that
doesn't fit this pattern. This isn't an ideal representation, and
should avoid legalization and have fewer opportunities for a
representational error.
Rather than invent a new shuffle mask operand type, similar to what
ShuffleVectorSDNode does, just track the original IR Constant mask
operand. I don't completely like the idea of adding another link to
the IR, but MIR is already quite dependent on IR constants already,
and this will allow sharing the shuffle mask utility functions with
the IR.
llvm-svn: 368704
Summary:
This implements an optimization described in Hacker's Delight 10-17:
when `C` is constant, the result of `X % C == 0` can be computed
more cheaply without actually calculating the remainder.
The motivation is discussed here: https://bugs.llvm.org/show_bug.cgi?id=35479.
One huge caveat: this signed case is only valid for positive divisors.
While we can freely negate negative divisors, we can't negate `INT_MIN`,
so for now if `INT_MIN` is encountered, we bailout.
As a follow-up, it should be possible to handle that more gracefully
via extra `and`+`setcc`+`select`.
This passes llvm's test-suite, and from cursory(!) cross-examination
the folds (the assembly) match those of GCC, and manual checking via alive
did not reveal any issues (other than the `INT_MIN` case)
Reviewers: RKSimon, spatel, hermord, craig.topper, xbolva00
Reviewed By: RKSimon, xbolva00
Subscribers: xbolva00, thakis, javed.absar, hiraditya, dexonsmith, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65366
llvm-svn: 368702
Currently we can't keep any state in the selector object that we get from
subtarget. As a result we have to plumb through all our variables through
multiple functions. This change makes it non-const and adds a virtual init()
method to allow further state to be captured for each target.
AArch64 makes use of this in this patch to cache a call to hasFnAttribute()
which is expensive to call, and is used on each selection of G_BRCOND.
Differential Revision: https://reviews.llvm.org/D65984
llvm-svn: 368652
Summary:
This was mostly an experiment to assess the feasibility of completely
eliminating a problematic implicit conversion case in D61321 in advance of
landing that* but it also happens to align with the goal of propagating the
use of Register/MCRegister instead of unsigned so I believe it makes sense
to commit it.
The overall process for eliminating the implicit conversions from
Register/MCRegister -> unsigned was to:
1. Add an explicit conversion to support genuinely required conversions to
unsigned. For example, using them as an index for IndexedMap. Sadly it's
not possible to have an explicit and implicit conversion to the same
type and only deprecate the implicit one so I called the explicit
conversion get().
2. Temporarily annotate the implicit conversion to unsigned with
LLVM_ATTRIBUTE_DEPRECATED to make them visible
3. Eliminate implicit conversions by propagating Register/MCRegister/
explicit-conversions appropriately
4. Remove the deprecation added in 2.
* My conclusion is that it isn't feasible as there's too much code to
update in one go.
Depends on D65678
Reviewers: arsenm
Subscribers: MatzeB, wdng, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65685
llvm-svn: 368643
- There was a simple typo in TextStub code that prevented version 3 files to be read.
- Included a version 3 unit test to handle the differences in the format.
- Also a typo in Error.h inside the comments.
https://reviews.llvm.org/D66041
This patch is from Cyndy Ishida <cyndy_ishida@apple.com>.
llvm-svn: 368630
Summary:
This commit fixed a race condition from multi-threaded thinLTO backends that causes non-deterministic memory corruption for a data structure used only by AutoFDO with compact binary profile.
GUIDToFuncNameMap, a static data member of type DenseMap in FunctionSamples is used as a per-module mapping from function name MD5 to name string when input AutoFDO profile is in compact binary format. However with ThinLTO, we can have parallel backends modifying and accessing the class static map concurrently. The fix is to make GUIDToFuncNameMap a member of SampleProfileLoader instead of a file static data.
Reviewers: wmi, davidxl, danielcdh
Subscribers: mehdi_amini, inglorion, hiraditya, dexonsmith, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65848
llvm-svn: 368596
Convert SymbolNameSize and SectionNameSize into just `NameSize`. The length of
a name embeded in a symbol table entry or section header table entry is length 8
for Sections, Symbols and Files. No need to have a distinct constant for each
one. Also removes the Size argument to 'generateStringRef' as the size is
always 'XCOFF::NameSize'.
llvm-svn: 368584
Support -march=tigerlake for x86.
Compare with Icelake Client, It include 4 more new features ,they are
avx512vp2intersect, movdiri, movdir64b, shstk.
Patch by Xiang Zhang (xiangzhangllvm)
Differential Revision: https://reviews.llvm.org/D65840
llvm-svn: 368543
Summary:
Hoisting/sinking instruction out of a loop isn't always beneficial. Hoisting an instruction from a cold block inside a loop body out of the loop could hurt performance. This change makes Loop ICM profile aware - it now checks block frequency to make sure hoisting/sinking anly moves instruction to colder block.
Test Plan:
ninja check
Reviewers: asbirlea, sanjoy, reames, nikic, hfinkel, vsk
Reviewed By: asbirlea
Subscribers: fhahn, vsk, davidxl, xbolva00, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65060
llvm-svn: 368526
This is an extension of a transform that tries to produce positive floating-point
constants to improve canonicalization (and hopefully lead to more reassociation
and CSE).
The original patches were:
D4904
D5363 (rL221721)
But as the test diffs show, these were limited to basic patterns by walking from
an instruction to its single user rather than recursively moving up the def-use
sequence. No fast-math is required here because we're only rearranging implicit
FP negations in intermediate ops.
A motivating bug is:
https://bugs.llvm.org/show_bug.cgi?id=32939
Differential Revision: https://reviews.llvm.org/D65954
llvm-svn: 368512
Introducing non-global control for default block-scan-limit in MemDep analysis.
Useful when there are many compilations per initialized LLVM instance (e.g. JIT).
Reviewed By: asbirlea
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65806
llvm-svn: 368502
The default behavior of Clang's indirect function call checker will replace
the address of each CFI-checked function in the output file's symbol table
with the address of a jump table entry which will pass CFI checks. We refer
to this as making the jump table `canonical`. This property allows code that
was not compiled with ``-fsanitize=cfi-icall`` to take a CFI-valid address
of a function, but it comes with a couple of caveats that are especially
relevant for users of cross-DSO CFI:
- There is a performance and code size overhead associated with each
exported function, because each such function must have an associated
jump table entry, which must be emitted even in the common case where the
function is never address-taken anywhere in the program, and must be used
even for direct calls between DSOs, in addition to the PLT overhead.
- There is no good way to take a CFI-valid address of a function written in
assembly or a language not supported by Clang. The reason is that the code
generator would need to insert a jump table in order to form a CFI-valid
address for assembly functions, but there is no way in general for the
code generator to determine the language of the function. This may be
possible with LTO in the intra-DSO case, but in the cross-DSO case the only
information available is the function declaration. One possible solution
is to add a C wrapper for each assembly function, but these wrappers can
present a significant maintenance burden for heavy users of assembly in
addition to adding runtime overhead.
For these reasons, we provide the option of making the jump table non-canonical
with the flag ``-fno-sanitize-cfi-canonical-jump-tables``. When the jump
table is made non-canonical, symbol table entries point directly to the
function body. Any instances of a function's address being taken in C will
be replaced with a jump table address.
This scheme does have its own caveats, however. It does end up breaking
function address equality more aggressively than the default behavior,
especially in cross-DSO mode which normally preserves function address
equality entirely.
Furthermore, it is occasionally necessary for code not compiled with
``-fsanitize=cfi-icall`` to take a function address that is valid
for CFI. For example, this is necessary when a function's address
is taken by assembly code and then called by CFI-checking C code. The
``__attribute__((cfi_jump_table_canonical))`` attribute may be used to make
the jump table entry of a specific function canonical so that the external
code will end up taking a address for the function that will pass CFI checks.
Fixes PR41972.
Differential Revision: https://reviews.llvm.org/D65629
llvm-svn: 368495
Summary:
Targets often have instructions that can sign-extend certain cases faster
than the equivalent shift-left/arithmetic-shift-right. Such cases can be
identified by matching a shift-left/shift-right pair but there are some
issues with this in the context of combines. For example, suppose you can
sign-extend 8-bit up to 32-bit with a target extend instruction.
%1:_(s32) = G_SHL %0:_(s32), i32 24 # (I've inlined the G_CONSTANT for brevity)
%2:_(s32) = G_ASHR %1:_(s32), i32 24
%3:_(s32) = G_ASHR %2:_(s32), i32 1
would reasonably combine to:
%1:_(s32) = G_SHL %0:_(s32), i32 24
%2:_(s32) = G_ASHR %1:_(s32), i32 25
which no longer matches the special case. If your shifts and extend are
equal cost, this would break even as a pair of shifts but if your shift is
more expensive than the extend then it's cheaper as:
%2:_(s32) = G_SEXT_INREG %0:_(s32), i32 8
%3:_(s32) = G_ASHR %2:_(s32), i32 1
It's possible to match the shift-pair in ISel and emit an extend and ashr.
However, this is far from the only way to break this shift pair and make
it hard to match the extends. Another example is that with the right
known-zeros, this:
%1:_(s32) = G_SHL %0:_(s32), i32 24
%2:_(s32) = G_ASHR %1:_(s32), i32 24
%3:_(s32) = G_MUL %2:_(s32), i32 2
can become:
%1:_(s32) = G_SHL %0:_(s32), i32 24
%2:_(s32) = G_ASHR %1:_(s32), i32 23
All upstream targets have been configured to lower it to the current
G_SHL,G_ASHR pair but will likely want to make it legal in some cases to
handle their faster cases.
To follow-up: Provide a way to legalize based on the constant. At the
moment, I'm thinking that the best way to achieve this is to provide the
MI in LegalityQuery but that opens the door to breaking core principles
of the legalizer (legality is not context sensitive). That said, it's
worth noting that looking at other instructions and acting on that
information doesn't violate this principle in itself. It's only a
violation if, at the end of legalization, a pass that checks legality
without being able to see the context would say an instruction might not be
legal. That's a fairly subtle distinction so to give a concrete example,
saying %2 in:
%1 = G_CONSTANT 16
%2 = G_SEXT_INREG %0, %1
is legal is in violation of that principle if the legality of %2 depends
on %1 being constant and/or being 16. However, legalizing to either:
%2 = G_SEXT_INREG %0, 16
or:
%1 = G_CONSTANT 16
%2:_(s32) = G_SHL %0, %1
%3:_(s32) = G_ASHR %2, %1
depending on whether %1 is constant and 16 does not violate that principle
since both outputs are genuinely legal.
Reviewers: bogner, aditya_nandakumar, volkan, aemerson, paquette, arsenm
Subscribers: sdardis, jvesely, wdng, nhaehnle, rovka, kristof.beyls, javed.absar, hiraditya, jrtc27, atanasyan, Petar.Avramovic, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61289
llvm-svn: 368487
Summary:
This patch keeps track of MCSymbols created for blocks that were
referenced in inline asm. It prevents creating a new symbol which
doesn't refer to the block.
Inline asm may have a reference to a label. The asm parser however
doesn't recognize it as a label and tries to create a new symbol. The
result being that instead of the original symbol (e.g. ".Ltmp0") the
parser replaces it in the inline asm with the new one (e.g. ".Ltmp00")
without updating it in the symbol table. So the machine basic block
retains the "old" symbol (".Ltmp0"), but the inline asm uses the new one
(".Ltmp00").
Reviewers: nickdesaulniers, craig.topper
Subscribers: nathanchance, javed.absar, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65304
llvm-svn: 368477
For type values that do not have proper names, print reasonable representation
in llvm-nm, llvm-readobj and llvm-readelf, matching GNU tools.s
Fixes PR41713.
Differential Revision: https://reviews.llvm.org/D65537
llvm-svn: 368451
Summary: Implement a new analysis to estimate the number of cache lines
required by a loop nest.
The analysis is largely based on the following paper:
Compiler Optimizations for Improving Data Locality
By: Steve Carr, Katherine S. McKinley, Chau-Wen Tseng
http://www.cs.utexas.edu/users/mckinley/papers/asplos-1994.pdf
The analysis considers temporal reuse (accesses to the same memory
location) and spatial reuse (accesses to memory locations within a cache
line). For simplicity the analysis considers memory accesses in the
innermost loop in a loop nest, and thus determines the number of cache
lines used when the loop L in loop nest LN is placed in the innermost
position.
The result of the analysis can be used to drive several transformations.
As an example, loop interchange could use it determine which loops in a
perfect loop nest should be interchanged to maximize cache reuse.
Similarly, loop distribution could be enhanced to take into
consideration cache reuse between arrays when distributing a loop to
eliminate vectorization inhibiting dependencies.
The general approach taken to estimate the number of cache lines used by
the memory references in the inner loop of a loop nest is:
Partition memory references that exhibit temporal or spatial reuse into
reference groups.
For each loop L in the a loop nest LN: a. Compute the cost of the
reference group b. Compute the 'cache cost' of the loop nest by summing
up the reference groups costs
For further details of the algorithm please refer to the paper.
Authored By: etiotto
Reviewers: hfinkel, Meinersbur, jdoerfert, kbarton, bmahjour, anemet,
fhahn
Reviewed By: Meinersbur
Subscribers: reames, nemanjai, MaskRay, wuzish, Hahnfeld, xusx595,
venkataramanan.kumar.llvm, greened, dmgreen, steleman, fhahn, xblvaOO,
Whitney, mgorny, hiraditya, mgrang, jsji, llvm-commits
Tag: LLVM
Differential Revision: https://reviews.llvm.org/D63459
llvm-svn: 368439
MSVC (19.16) wants to see the definition of Instruction in
`std::pair<unsigned, const Instruction &> SourceRef` to decide
if it is assignable.
Patch by Orivej Desh.
Differential Revision: https://reviews.llvm.org/D65844
llvm-svn: 368436
Flag -show-encoding enables the printing of instruction encodings as part of the
the instruction info view.
Example (with flags -mtriple=x86_64-- -mcpu=btver2):
Instruction Info:
[1]: #uOps
[2]: Latency
[3]: RThroughput
[4]: MayLoad
[5]: MayStore
[6]: HasSideEffects (U)
[7]: Encoding Size
[1] [2] [3] [4] [5] [6] [7] Encodings: Instructions:
1 2 1.00 4 c5 f0 59 d0 vmulps %xmm0, %xmm1, %xmm2
1 4 1.00 4 c5 eb 7c da vhaddps %xmm2, %xmm2, %xmm3
1 4 1.00 4 c5 e3 7c e3 vhaddps %xmm3, %xmm3, %xmm4
In this example, column Encoding Size is the size in bytes of the instruction
encoding. Column Encodings reports the actual instruction encodings as byte
sequences in hex (objdump style).
The computation of encodings is done by a utility class named mca::CodeEmitter.
In future, I plan to expose the CodeEmitter to the instruction builder, so that
information about instruction encoding sizes can be used by the simulator. That
would be a first step towards simulating the throughput from the decoders in the
hardware frontend.
Differential Revision: https://reviews.llvm.org/D65948
llvm-svn: 368432
I've now needed to add an extra parameter to this call twice recently. Not only
is the signature getting extremely unwieldy, but just updating all of the
callsites and implementations is a pain. Putting the parameters in a struct
sidesteps both issues.
llvm-svn: 368408
This isn't the most robust error handling API, but does allow clients to
opt-in to getting Errors they can handle. I suspect the long-term
solution would be to move away from the lazy unit parsing and have an
explicit step that parses the unit and then allows access to the other
APIs that require a parsed unit.
llvm-dwarfdump could be expanded to use this (or newer/better API) to
demonstrate the benefit of it - but for now lld will use this in a
follow-up cl which ensures lld can exit non-zero on errors like this (&
provide more descriptive diagnostics including which object file the
error came from).
(error access to later errors when parsing nested DIEs would be good too
- but, again, exposing that without it being a hassle for every consumer
may be tricky)
llvm-svn: 368377
GlobalAlias and GlobalIFunc ought to be treated the same by the IR
linker, so we can generalize the code to be in terms of their common
base class GlobalIndirectSymbol.
Differential Revision: https://reviews.llvm.org/D55046
llvm-svn: 368357
the bitcode has the arm64 retainAutoreleasedReturnValue marker
The ARC middle-end passes stopped optimizing or transforming bitcode
that has been compiled with old compilers after we started emitting
calls to ARC runtime functions as intrinsic calls instead of normal
function calls in the front-end and made changes to teach the ARC
middle-end passes about those intrinsics (see r349534). This patch
converts calls to ARC runtime functions that are not intrinsic functions
to intrinsic function calls if the bitcode has the arm64
retainAutoreleasedReturnValue marker. Checking for the presence of the
marker is necessary to make sure we aren't changing ARC function calls
that were originally MRR message sends (see r349952).
rdar://problem/53280660
Differential Revision: https://reviews.llvm.org/D65902
llvm-svn: 368311
Summary:
This patch enable assembly output of local commons for AIX using .lcomm
directives. Adds a EmitXCOFFLocalCommonSymbol to MCStreamer so we can emit the
AIX version of .lcomm assembly directives which include a csect name. Handle the
case of BSS locals in PPCAIXAsmPrinter by using EmitXCOFFLocalCommonSymbol. Adds
a test for generating .lcomm on AIX Targets.
Reviewers: cebowleratibm, hubert.reinterpretcast, Xiangling_L, jasonliu, sfertile
Reviewed By: sfertile
Subscribers: wuzish, nemanjai, hiraditya, kbarton, MaskRay, jsji, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64825
llvm-svn: 368306
This adds pre- and post- increment and decrements for MVE loads and stores. It
uses the builtin pre and post load/store detection, unlike Neon. Loads are
selected with the code in tryT2IndexedLoad, stores are selected with tablegen
patterns. The immediates have a +/-7bit range, multiplied by the size of the
element.
Differential Revision: https://reviews.llvm.org/D63840
llvm-svn: 368305
For some targets the LICM pass can result in sub-optimal code in some
cases where it would be better not to run the pass, but it isn't
always possible to suppress the transformations heuristically.
Where the front-end has insight into such cases it is beneficial
to attach loop metadata to disable the pass - this change adds the
llvm.licm.disable metadata to enable that.
Differential Revision: https://reviews.llvm.org/D64557
llvm-svn: 368296
In some cases a symbol might have section index == SHN_XINDEX.
This is an escape value indicating that the actual section header index
is too large to fit in the containing field.
Then the SHT_SYMTAB_SHNDX section is used. It contains the 32bit values
that stores section indexes.
ELF gABI says that there can be multiple SHT_SYMTAB_SHNDX sections,
i.e. for example one for .symtab and one for .dynsym
(1) https://groups.google.com/forum/#!topic/generic-abi/-XJAV5d8PRg
(2) DT_SYMTAB_SHNDX: http://www.sco.com/developers/gabi/latest/ch5.dynamic.html
In this patch I am only supporting a single SHT_SYMTAB_SHNDX associated
with a .symtab. This is a more or less common case which is used a few tests I saw in LLVM.
I decided not to create the SHT_SYMTAB_SHNDX section as "implicit",
but implement is like a kind of regular section for now.
i.e. tools do not recreate this section or its content, like they do for
symbol table sections, for example. That should allow to write all kind of
possible broken test cases for our needs and keep the output closer to requested.
Differential revision: https://reviews.llvm.org/D65446
llvm-svn: 368272
Currently, we have a code duplication in llvm-readobj which was introduced in D63266.
The duplication was introduced to allow llvm-readobj to dump the partially
broken object. Methods in ELFFile<ELFT> perform a strict validation of the inputs,
what is itself good, but not for dumper tools, that might want to dump the information,
even if some pieces are broken/unexpected.
This patch introduces a warning handler which can be passed to ELFFile<ELFT> methods
and can allow skipping the non-critical errors when needed/possible.
For demonstration, I removed the duplication from llvm-readobj and implemented a warning using
the new custom warning handler. It also deduplicates the strings printed, making the output less verbose.
Differential revision: https://reviews.llvm.org/D65515
llvm-svn: 368260
Summary:
The ever growing switch required Attribute::AttrKind values but they
might not be available for all abstract attributes we deduce. With the
new method we track statistics at the abstract attribute level. The
provided macros simplify the usage and make the messages uniform.
Reviewers: sstefan1, uenoku
Subscribers: hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65732
llvm-svn: 368227
Summary:
The wrapper reduces boilerplate code and also provide a nice way to
determine the state type used by an abstract attributes statically via
AAType::StateType.
This was already discussed as part of the review of D65711.
Reviewers: sstefan1, uenoku
Subscribers: hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65786
llvm-svn: 368224
Summary:
So far, whenever one wants to look at returned values, one had to deal
with the AAReturnedValues and potentially with the AAIsDead attribute.
In the same spirit as other checkForAllXXX methods, we add this
functionality now to the Attributor. By adopting the use sites we got
better results when return instructions were dead.
Reviewers: sstefan1, uenoku
Subscribers: hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65733
llvm-svn: 368222
Without this patch computeConstantDifference returns None for cases like
these:
computeConstantDifference(%x, %x)
computeConstantDifference({%x,+,16}, {%x,+,16})
Differential Revision: https://reviews.llvm.org/D65474
llvm-svn: 368193
Some of these names were abbreviated, some were not, some pluralised,
some not. Made the API difficult to use - since it's an exact 1:1
mapping to the DWARF sections - use those names (changing underscore
separation for camel casing).
llvm-svn: 368189
- Remove support for non-recursive mutexes. This was unused.
- The std::recursive_mutex is now created/destroyed unconditionally.
Locking is still only done if threading is enabled.
- Alias SmartScopedLock to std::lock_guard.
This should make no semantic difference on the existing APIs.
llvm-svn: 368158
This was initially committed in r368059 but got reverted in r368084
because there was a faulty logic in how the shift amounts type mismatch
was being handled (it simply wasn't).
I've added an explicit bailout before we SimplifyAddInst() - i don't think
it's designed in general to handle differently-typed values, even though
the actual problem only comes from ConstantExpr's.
I have also changed the common type deduction, to not just blindly
look past zext, but try to do that so that in the end types match.
Differential Revision: https://reviews.llvm.org/D65380
llvm-svn: 368141
When e_shstrndx is equal to SHN_XINDEX,
the index of the section string table section should
be taken from the sh_link field of the section
header at index 0.
If sh_link is broken, e.g. contains an index that is
larger than number of sections, then error is reported.
This error message was untested before.
Differential revision: https://reviews.llvm.org/D65391
llvm-svn: 368139
Globals are instrumented by adding a pointer tag to their symbol values
and emitting metadata into a special section that allows the runtime to tag
their memory when the library is loaded.
Due to order of initialization issues explained in more detail in the comments,
shadow initialization cannot happen during regular global initialization.
Instead, the location of the global section is marked using an ELF note,
and we require libc support for calling a function provided by the HWASAN
runtime when libraries are loaded and unloaded.
Based on ideas discussed with @evgeny777 in D56672.
Differential Revision: https://reviews.llvm.org/D65770
llvm-svn: 368102
This reverts r368059 (git commit 0f95710976)
This caused Clang to assert while self-hosting and compiling
SystemZInstrInfo.cpp. Reduction is running.
llvm-svn: 368084
Commit r368064 was necessary after r367953 (D65712) broke the module
build. That happened, apparently, because the template class IRAttribute
defined in the header had a virtual method defined in the corresponding
source file (IRAttribute::manifest). To unbreak the situation this patch
introduces a helper function IRAttributeManifest::manifestAttrs which
is used to implement IRAttribute::manifest in the header. The deifnition
of the helper function is still in the source file.
Patch by jdoerfert (Johannes Doerfert)
Differential Revision: https://reviews.llvm.org/D65821
llvm-svn: 368076
https://reviews.llvm.org/D65698
This adds a KnownBits analysis pass for GISel. This was done as a
pass (compared to static functions) so that we can add other features
such as caching queries(within a pass and across passes) in the future.
This patch only adds the basic pass boiler plate, and implements a lazy
non caching knownbits implementation (ported from SelectionDAG). I've
also hooked up the AArch64PreLegalizerCombiner pass to use this - there
should be no compile time regression as the analysis is lazy.
llvm-svn: 368065
Summary:
This is tested by D61289 but has been pulled into a separate patch at
a reviewers request.
Reviewers: bogner, aditya_nandakumar, volkan, aemerson, paquette, arsenm, rovka
Reviewed By: arsenm
Subscribers: javed.absar, hiraditya, wdng, kristof.beyls, Petar.Avramovic, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61321
llvm-svn: 368063
Summary:
When fiddling with sched profiles, especially creating new ones, it's amazingly easy
to end up with malformed .td that crashes tablegen, without explanation of the bug.
This changes the most common assertion i have encountered to dump enough information
to be able to fix the .td
Split of from D63628
Reviewers: RKSimon, craig.topper, nhaehnle
Reviewed By: craig.topper
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65790
llvm-svn: 368060
Summary:
Currently `reassociateShiftAmtsOfTwoSameDirectionShifts()` only handles
two shifts one after another. If the shifts are `shl`, we still can
easily perform the fold, with no extra legality checks:
https://rise4fun.com/Alive/OQbM
If we have right-shift however, we won't be able to make it
any simpler than it already is.
After this the only thing missing here is constant-folding: (`NewShAmt >= bitwidth(X)`)
* If it's a logical shift, then constant-fold to `0` (not `undef`)
* If it's a `ashr`, then a splat of original signbit
https://rise4fun.com/Alive/E1Khttps://rise4fun.com/Alive/i0V
Reviewers: spatel, nikic, xbolva00
Reviewed By: spatel
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65380
llvm-svn: 368059
This updates all libraries and tools in LLVM Core to use 64-bit offsets
which directly or indirectly come to DataExtractor.
Differential Revision: https://reviews.llvm.org/D65638
llvm-svn: 368014
Using 64-bit offsets is required to fully implement 64-bit DWARF.
As these classes are used in many different libraries they should
temporarily support both 32- and 64-bit offsets.
Differential Revision: https://reviews.llvm.org/D64006
llvm-svn: 368013
This patch changes the DAG legalizer to respect the operation actions
set by the target for strict floating-point operations. (Currently, the
legalizer will usually fall back to mutate to the non-strict action
(which is assumed to be legal), and only skip mutation if the strict
operation is marked legal.)
With this patch, if whenever a strict operation is marked as Legal or
Custom, it is passed to the target as usual. Only if it is marked as
Expand will the legalizer attempt to mutate to the non-strict operation.
Note that this will now fail if the non-strict operation is itself
marked as Custom -- the target will have to provide a Custom definition
for the strict operation then as well.
Reviewed By: hfinkel
Differential Revision: https://reviews.llvm.org/D65226
llvm-svn: 368012
Summary:
Before this patch MGATHER/MSCATTER is capable of representing all
common addressing modes, but only when illegal types are used.
This patch adds an IndexType property so more representations
are available when using legal types only.
Original modes:
vector of bases
base + vector of signed scaled offsets
New modes:
base + vector of signed unscaled offsets
base + vector of unsigned scaled offsets
base + vector of unsigned unscaled offsets
The current behaviour of addressing modes for gather/scatter remains
unchanged.
Patch by Paul Walker.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D65636
llvm-svn: 368008
Added two more conversions to satisfy MSVC and moved the declaration of
MCPhysReg to MCRegister.h to enable that
This reverts r367932 (git commit eac86ec25f)
llvm-svn: 367965
Summary:
Similar to `Attributor::checkForAllCallSites`, we now provide such
functionality for instructions of a certain opcode through
`Attributor::checkForAllInstructions` and the convenient wrapper
`Attributor::checkForAllCallLikeInstructions`. This cleans up code,
avoids duplication, and simplifies the usage of liveness information.
Reviewers: sstefan1, uenoku
Subscribers: hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65731
llvm-svn: 367961
Summary:
Certain properties, e.g., an AttrKind, are not shared among all abstract
attributes. This patch extracts the functionality into a helper struct.
Reviewers: uenoku, sstefan1
Subscribers: hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65712
llvm-svn: 367953
To remove boilerplate, mostly passing through values to the
AbstractAttriubute base class, we extract the state into an IRPosition
helper. There is no function change intended but the IRPosition struct
will provide more functionality down the line.
Reviewers: sstefan1, uenoku
Subscribers: hiraditya, bollu, jfb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65711
llvm-svn: 367952
Summary:
The new scheme is similar to the pass manager and dyn_cast scheme where
we identify classes by the address of a static member. This is better
than the old scheme in which we had to "invent" new Attributor enums if
there was no corresponding one.
Reviewers: sstefan1, uenoku
Subscribers: hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65710
llvm-svn: 367951
Summary:
Instead of storing the reference to the InformationCache we now pass it
whenever it might be needed.
Reviewers: sstefan1, uenoku
Subscribers: hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65709
llvm-svn: 367950
Summary:
When the WebAssembly backend encounters a return type that doesn't
fit within i32, SelectionDAG performs sret demotion, adding an
additional argument to the start of the function that contains
a pointer to an sret buffer to use instead. However, this conflicts
with the emscripten sjlj lowering pass. There we translate calls like:
```
call {i32, i32} @foo()
```
into (in pseudo-llvm)
```
%addr = @foo
call {i32, i32} @__invoke_{i32,i32}(%addr)
```
i.e. we perform an indirect call through an extra function.
However, the sret transform now transforms this into
the equivalent of
```
%addr = @foo
%sret = alloca {i32, i32}
call {i32, i32} @__invoke_{i32,i32}(%sret, %addr)
```
(while simultaneously translation the implementation of @foo as well).
Unfortunately, this doesn't work out. The __invoke_ ABI expected
the function address to be the first argument, causing crashes.
There is several possible ways to fix this:
1. Implementing the sret rewrite at the IR level as well and performing
it as part of lowering to __invoke
2. Fixing the wasm backend to recognize that __invoke has a special ABI
3. A change to the binaryen/emscripten ABI to recognize this situation
This revision implements the middle option, teaching the backend to
treat __invoke_ functions specially in sret lowering. This is achieved
by
1) Introducing a new CallingConv ID for invoke functions
2) When this CallingConv ID is seen in the backend and the first argument
is marked as sret (a function pointer would never be marked as sret),
swapping the first two arguments.
Reviewed By: tlively, aheejin
Differential Revision: https://reviews.llvm.org/D65463
llvm-svn: 367935
When we remove instructions cached references could still be live. This
patch avoids removing invoke instructions that are replaced by calls and
instead keeps them around but in a dead block.
llvm-svn: 367933
MSVC finds ambiguity where clang doesn't and it looks like it's not going to be an easy fix
Reverting while I figure out how to fix it
This reverts r367916 (git commit aa15ec3c23)
This reverts r367920 (git commit 5d14efe279)
llvm-svn: 367932
Any addresses that we pass to llvm-symbolizer are going to be untagged,
while any HWASAN instrumented globals are going to be tagged in the
symbol table. Therefore we need to untag the addresses before using them.
Differential Revision: https://reviews.llvm.org/D65769
llvm-svn: 367926
FastISel already does this since the initial arm64 port was upstreamed, so
it seems there are no issues with doing this at -O0 for very small memcpys.
Gives a 0.2% geomean code size improvement on CTMark.
Differential Revision: https://reviews.llvm.org/D65758
llvm-svn: 367919
Summary:
This has no functional effect but makes it more obvious which parts of the
compiler do not use Register/MCRegister when you mark the implicit conversion
deprecated.
Implicit conversions for comparisons accounted for ~20% (~3k of ~13k) of
the implicit conversions when I first measured it. I haven't maintained
those numbers as other patches have landed though so it may be out of date.
Reviewers: arsenm
Reviewed By: arsenm
Subscribers: wdng, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65678
llvm-svn: 367916
This allows to write a test case for one of untested errors
in llvm/Object/ELF.h.
I did it in this patch to demonstrate.
Differential revision: https://reviews.llvm.org/D65394
llvm-svn: 367860
Summary:
This patch adds initial support for the SVE calling convention such that
SVE types can be passed as arguments and return values to/from a
subroutine.
The SVE AAPCS states [1]:
z0-z7 are used to pass scalable vector arguments to a subroutine,
and to return scalable vector results from a function. If a
subroutine takes arguments in scalable vector or predicate
registers, or if it is a function that returns results in such
registers, it must ensure that the entire contents of z8-z23 are
preserved across the call. In other cases it need only preserve the
low 64 bits of z8-z15, as described in §5.1.2.
p0-p3 are used to pass scalable predicate arguments to a subroutine
and to return scalable predicate results from a function. If a
subroutine takes arguments in scalable vector or predicate
registers, or if it is a function that returns results in these
registers, it must ensure that p4-p15 are preserved across the call.
In other cases it need not preserve any scalable predicate register
contents.
SVE predicate and data registers are passed indirectly (i.e. spilled to the
stack and pass the address) if they exceed the registers used for argument
passing defined by the PCS referenced above. Until SVE stack support is merged
we can't spill SVE registers to the stack, so currently an llvm_unreachable is
used where we will eventually handle this.
[1] https://static.docs.arm.com/100986/0000/100986_0000.pdf
Reviewed By: ostannard
Differential Revision: https://reviews.llvm.org/D65448
llvm-svn: 367859
This method is dead. It was introduced in D47989,
but now the logic from D63475 is used in llvm-readobj instead.
Also it has a problem: it returns the first matching section,
even if there are multiple sections with the same name.
Differential revision: https://reviews.llvm.org/D65393
llvm-svn: 367833
Adds a two way mapping between the scalable vector IR type and
corresponding SelectionDAG ValueTypes.
Reviewers: craig.topper, jeroen.dobbelaere, fhahn, rengolin, greened, rovka
Reviewed By: greened
Differential Revision: https://reviews.llvm.org/D47770
llvm-svn: 367832
Summary:
This is patch is part of a serie to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: courbet, jfb, jakehehrlich
Reviewed By: jfb
Subscribers: wuzish, jholewinski, arsenm, dschuff, nemanjai, jvesely, nhaehnle, javed.absar, sbc100, jgravelle-google, hiraditya, aheejin, kbarton, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, rogfer01, MartinMosbeck, brucehoult, the_o, dexonsmith, PkmX, jocewei, jsji, s.egerton, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65514
llvm-svn: 367828
Add an explicit construction of the ArrayRef, gcc 5 and earlier don't
seem to select the ArrayRef constructor which takes a C array when the
construction is implicit.
Original commit message:
- Avoid a crash when IPRA calls ARMFrameLowering::determineCalleeSaves
with a null RegScavenger. Simply not updating the register scavenger
is fine because IPRA only cares about the SavedRegs vector, the acutal
code of the function has already been generated at this point.
- Add a new hook to TargetRegisterInfo to get the set of registers which
can be clobbered inside a call, even if the compiler can see both
sides, by linker-generated code.
Differential revision: https://reviews.llvm.org/D64908
llvm-svn: 367819
Summary:
This contains various fixes:
- Explicitly determine and return the next noreturn instruction.
- If an invoke calls a noreturn function which is not nounwind we
keep the unwind destination live. This also means we require an
invoke. Though we can still add the unreachable to the normal
destination block.
- Check if the return instructions are dead after we look for calls
to avoid triggering an optimistic fixpoint in the presence of
assumed liveness information.
- Make the interface work with "const" pointers.
- Some simplifications
While additional tests are included, full coverage is achieved only with
D59978.
Reviewers: sstefan1, uenoku
Subscribers: hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65701
llvm-svn: 367791
When a fixpoint is indicated the change status is known due to the
fixpoint kind. This simplifies a common code pattern by making the
connection explicit.
llvm-svn: 367790
MachO/x86-64 UNSIGNED relocs are almost always 64-bit (length=3), but UNSIGNED
relocs of length=2 are allowed if the target resides in the low 32-bits. This
patch adds support for such relocations in JITLink (previously they would have
triggered an unsupported relocation error).
llvm-svn: 367764
This is an old commit that exposed a bug in the GISel importer, which caused
non-truncating stores to be selected for truncating store patterns. Now that's
been fixed in r367737 this can go back in.
llvm-svn: 367739
Modifying other AbstractAttributes to use Liveness AA and skip dead instructions.
Reviewers: jdoerfert, uenoku
Subscribers: hiraditya, llvm-commits
Differential revision: https://reviews.llvm.org/D65243
llvm-svn: 367725
Previously, debuginfo types are annotated to
IR builtin preserve_struct_access_index() and
preserve_union_access_index(), but not
preserve_array_access_index(). The debug info
is useful to identify the root type name which
later will be used for type comparison.
For user access without explicit type conversions,
the previous scheme works as we can ignore intermediate
compiler generated type conversions (e.g., from union types to
union members) and still generate correct access index string.
The issue comes with user explicit type conversions, e.g.,
converting an array to a structure like below:
struct t { int a; char b[40]; };
struct p { int c; int d; };
struct t *var = ...;
... __builtin_preserve_access_index(&(((struct p *)&(var->b[0]))->d)) ...
Although BPF backend can derive the type of &(var->b[0]),
explicit type annotation make checking more consistent
and less error prone.
Another benefit is for multiple dimension array handling.
For example,
struct p { int c; int d; } g[8][9][10];
... __builtin_preserve_access_index(&g[2][3][4].d) ...
It would be possible to calculate the number of "struct p"'s
before accessing its member "d" if array debug info is
available as it contains each dimension range.
This patch enables to annotate IR builtin preserve_array_access_index()
with proper debuginfo type. The unit test case and language reference
is updated as well.
Signed-off-by: Yonghong Song <yhs@fb.com>
Differential Revision: https://reviews.llvm.org/D65664
llvm-svn: 367724
Summary:
As part of this, define DenseMapInfo for MCRegister (and Register while I'm at it)
Depends on D65599
Reviewers: arsenm
Subscribers: MatzeB, qcolombet, jvesely, wdng, nhaehnle, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65605
llvm-svn: 367719
libObject does not apply the Exported flag to symbols in COFF object files,
which can lead to assertions when the symbol flags initially derived from
IR added to the JIT clash with the flags seen by the JIT linker. Both
RTDyldObjectLinkingLayer and ObjectLinkingLayer have a workaround for this:
they can be told to override the flags seen by the linker with the flags
attached to the materialization responsibility object that was passed down
to the linker. This patch modifies LLJIT's setup code to enable this override
by default on platforms where COFF is the default object format.
llvm-svn: 367712
Summary:
Register can cast to MCRegister and we may want to consider asserting
!isValid() || isPhysical() when expensive checks are on.
Depends on D65554
Reviewers: arsenm
Subscribers: wdng, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65599
llvm-svn: 367711
Summary:
If the CallCounts change after an iteration of the DevirtSCCRepeatedPass, this is not reflected in the local CallCounts structure triggering the assertion checking the before/after sizes.
Since it is valid for the size to change and this only uses the CallCounts for the devirtualizing heuristic, keep a <Function*, CallCount> map instead, and make the devirtualizing decision using the counts for the functions that exist both before and after the pass.
Resolves PR42726.
Reviewers: chandlerc
Subscribers: mehdi_amini, jlebar, sanjoy.google, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65621
llvm-svn: 367703
ThreadSafeModule/ThreadSafeContext are used to manage lifetimes and locking
for LLVMContexts in ORCv2. Prior to this patch contexts were locked as soon
as an associated Module was emitted (to be compiled and linked), and were not
unlocked until the emit call returned. This could lead to deadlocks if
interdependent modules that shared contexts were compiled on different threads:
when, during emission of the first module, the dependence was discovered the
second module (which would provide the required symbol) could not be emitted as
the thread emitting the first module still held the lock.
This patch eliminates this possibility by moving to a finer-grained locking
scheme. Each client holds the module lock only while they are actively operating
on it. To make this finer grained locking simpler/safer to implement this patch
removes the explicit lock method, 'getContextLock', from ThreadSafeModule and
replaces it with a new method, 'withModuleDo', that implicitly locks the context,
calls a user-supplied function object to operate on the Module, then implicitly
unlocks the context before returning the result.
ThreadSafeModule TSM = getModule(...);
size_t NumFunctions = TSM.withModuleDo(
[](Module &M) { // <- context locked before entry to lambda.
return M.size();
});
Existing ORCv2 layers that operate on ThreadSafeModules are updated to use the
new method.
This method is used to introduce Module locking into each of the existing
layers.
llvm-svn: 367686
This patch adds support to the WholeProgramDevirt pass to perform
index-based WPD, which is invoked from ThinLTO during the thin link.
The ThinLTO backend (WPD import phase) behaves the same regardless of
whether the WPD decisions were made with the index-based or (the
existing) IR-based analysis.
Depends on D54815.
Reviewers: pcc
Subscribers: mehdi_amini, inglorion, eraman, steven_wu, dexonsmith, arphaman, dang, llvm-commits
Differential Revision: https://reviews.llvm.org/D55153
llvm-svn: 367679
This optimisation isn't generally profitable for ARM, because we can
save/restore many registers in the prologue and epilogue using the PUSH
and POP instructions, but mostly use individual LDR/STR instructions for
other spills.
Differential revision: https://reviews.llvm.org/D64910
llvm-svn: 367670
- Avoid a crash when IPRA calls ARMFrameLowering::determineCalleeSaves
with a null RegScavenger. Simply not updating the register scavenger
is fine because IPRA only cares about the SavedRegs vector, the acutal
code of the function has already been generated at this point.
- Add a new hook to TargetRegisterInfo to get the set of registers which
can be clobbered inside a call, even if the compiler can see both
sides, by linker-generated code.
Differential revision: https://reviews.llvm.org/D64908
llvm-svn: 367669
This patch adds an ability to disable profile based peeling
causing the peeling of all iterations and as a result prohibits
further unroll/peeling attempts on that loop.
The motivation to get an ability to separate peeling usage in
pipeline where in the first part we peel only separate iterations if needed
and later in pipeline we apply the full peeling which will prohibit further peeling.
Reviewers: reames, fhahn
Reviewed By: reames
Subscribers: hiraditya, zzheng, dmgreen, llvm-commits
Differential Revision: https://reviews.llvm.org/D64983
llvm-svn: 367668
The unit tests in BasicAliasAnalysisTest use the alias analysis API
directly and do not call setAAResults to initalize AAR. This gives a
valgrind error "Conditional Jump depends on unitialized variable".
On most buildbots the variable is nullptr, but in some cases it can be
non nullptr leading to seemingly random failures.
These tests were disabled in r366986. With the initialization they can be
enabled again.
Fixes PR42719
Differential Revision: https://reviews.llvm.org/D65568
llvm-svn: 367662
1. raw_ostream supports ANSI colors so that you can write messages to
the termina with colors. Previously, in order to change and reset
color, you had to call `changeColor` and `resetColor` functions,
respectively.
So, if you print out "error: " in red, for example, you had to do
something like this:
OS.changeColor(raw_ostream::RED);
OS << "error: ";
OS.resetColor();
With this patch, you can write the same code as follows:
OS << raw_ostream::RED << "error: " << raw_ostream::RESET;
2. Add a boolean flag to raw_ostream so that you can disable colored
output. If you disable colors, changeColor, operator<<(Color),
resetColor and other color-related functions have no effect.
Most LLVM tools automatically prints out messages using colors, and
you can disable it by passing a flag such as `--disable-colors`.
This new flag makes it easy to write code that works that way.
Differential Revision: https://reviews.llvm.org/D65564
llvm-svn: 367649
Current peeling cost model can decide to peel off not all iterations
but only some of them to eliminate conditions on phi. At the same time
if any peeling happens the door for further unroll/peel optimizations on that
loop closes because the part of the code thinks that if peeling happened
it is profile based peeling and all iterations are peeled off.
To resolve this inconsistency the patch provides the flag which states whether
the full peeling basing on profile is enabled or not and peeling cost model
is able to modify this field like it does not PeelCount.
In a separate patch I will introduce an option to allow/disallow peeling basing
on profile.
To avoid infinite loop peeling the patch tracks the total number of peeled iteration
through llvm.loop.peeled.count loop metadata.
Reviewers: reames, fhahn
Reviewed By: reames
Subscribers: hiraditya, zzheng, dmgreen, llvm-commits
Differential Revision: https://reviews.llvm.org/D64972
llvm-svn: 367647
Summary:
The MC layer doesn't expect to deal with vregs but
TargetRegisterClass::contains() forwards into MCRegisterClass::contains()
and this can cause vregs to turn up in the MC layer APIs. Add guards
against this to prevent this becoming a problem as we replace unsigned
with a new MCRegister object for improved type safety.
Reviewers: arsenm
Subscribers: wdng, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65554
llvm-svn: 367636
Add PGO support at -O0 in the experimental new pass manager to sync the
behavior of the legacy pass manager.
Also change the test of gcc-flag-compatibility.c for more complete test:
(1) change the match string to "profc" and "profd" to ensure the
instrumentation is happening.
(2) add IR format proftext so that PGO use compilation is tested.
Differential Revision: https://reviews.llvm.org/D64029
llvm-svn: 367628
Summary:
The namespacing in Register is currently slightly wrong as there is a
(rarely used) stack slot namespace too. The namespacing doesn't use
anything from the Target so we can move the definition from
TargetRegisterInfo to Register to keep it in one place
Note: To keep the patch reasonably sized for review I've left stub
functions in the original TargetRegisterInfo. We should update all the uses
instead
Reviewers: arsenm, bogner, aditya_nandakumar, volkan
Subscribers: wdng, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65553
llvm-svn: 367614
AMDGPU sometimes has legal s16 and <2 x s16> operations, but all
registers are really 32-bit. An unmerge destination really should ben
widened to a 32-bit register. If widening a scalarizing vector with a
target size that matches the vector size, bitcast to integer and
extract the relevant bits with shifts.
I'm not sure if this is the right place for this. This could arguably
be part of widenScalar for the result. I also have a growing feeling
that we're missing a bitcast legalize action.
llvm-svn: 367604
If a type is larger than a legal type and needs to be split, we would previously allow the multiply to be decomposed even if the split multiply is legal. Since the shift + add/sub code would also need to be split, its not any better to decompose it.
This patch figures out what type the mul will eventually be legalized to and then uses that type for the query. I tried just returning false illegal types and letting them get handled after type legalization, but then we can't recognize and i64 constant splat on 32-bit targets since will be destroyed by type legalization. We could special case vectors of i64 to avoid that...
Differential Revision: https://reviews.llvm.org/D65533
llvm-svn: 367601
This allows folding of the scalar epilogue loop (the tail) into the main
vectorised loop body when the loop is annotated with a "vector predicate"
metadata hint. To fold the tail, instructions need to be predicated (masked),
enabling/disabling lanes for the remainder iterations.
Differential Revision: https://reviews.llvm.org/D65197
llvm-svn: 367592
Adds a method which, when called with function.getArg(i), returns an
Argument* to the i'th argument.
Patch by Henry Wildermuth
Differential Revision: https://reviews.llvm.org/D64925
llvm-svn: 367576
Summary:
While there is always a `Value::replaceAllUsesWith()`,
sometimes the replacement needs to be conditional.
I have only cleaned a few cases where `replaceUsesWithIf()`
could be used, to both add test coverage,
and show that it is actually useful.
Reviewers: jdoerfert, spatel, RKSimon, craig.topper
Reviewed By: jdoerfert
Subscribers: dschuff, sbc100, jgravelle-google, hiraditya, aheejin, george.burgess.iv, asbirlea, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65528
llvm-svn: 367548
Summary:
Sometimes we need to swap true-val and false-val of a `SelectInst`.
Having a function for that is nicer than hand-writing it each time.
Reviewers: spatel, RKSimon, craig.topper, jdoerfert
Reviewed By: jdoerfert
Subscribers: jdoerfert, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65520
llvm-svn: 367547
The current minimum GCC version is 4.8 (soon to be 5.1), we there don't need to check for older versions. While I'm around Compiler.h, also update some of the doxygen comment.
llvm-svn: 367508
Start migrating to a form that will be compatible with the global isel
emitter. Also should fix some overly lax checks on the memory type,
which allowed mis-selecting some illegal atomics.
llvm-svn: 367506
Summary:
This will make it possible to improve IPRA by taking into account
register usage in indirect calls.
NFC yet; this is just laying the groundwork to start building
up patches to take advantage of the information for improved register
allocation.
Reviewers: aditya_nandakumar, volkan, qcolombet, arsenm, rovka, aemerson, paquette
Subscribers: sdardis, wdng, javed.absar, hiraditya, jrtc27, atanasyan, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65488
llvm-svn: 367476
This makes the field wider than MachineOperand::SubReg_TargetFlags so that
we don't end up silently truncating any higher bits. We should still catch
any bits truncated from the MachineOperand field as a consequence of the
assertion in MachineOperand::setTargetFlags().
Differential Revision: https://reviews.llvm.org/D65465
llvm-svn: 367474
Added AddOverflow, SubOverflow and MulOverflow to compute truncated results and return a flag indicating whether overflow occured.
Differential Revision: https://reviews.llvm.org/D65494
llvm-svn: 367470
Summary:
Verify that the incoming defs into phis are the last defs from the
respective incoming blocks.
When moving blocks, insertDef must RenameUses. Adding this verification
makes GVNHoist tests fail that uncovered this issue.
Reviewers: george.burgess.iv
Subscribers: jlebar, Prazek, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D63147
llvm-svn: 367451
The ELF for the Arm 64-bit Architecture document originally specified
R_AARCH64_TLS_DTPREL64 = 0x404
R_AARCH64_TLS_DTPMOD64 = 0x405
LLVM correctly followed the document. Unfortunately in binutils these
two codes were reversed:
R_AARCH64_TLS_DTPMOD64 = 0x404
R_AARCH64_TLS_DTPREL64 = 0x405
Given that binaries had shipped this change has become the defacto standard
interpretation of these relocation codes for any toolchain that wanted to
remain compatible with GNU.
To recognize this the latest version of the ABI document has renamed
the relocations to R_AARCH64_TLS_IMPDEF1 and R_AARCH64_TLS_IMPDEF2
permitting a toolchain to choose between the two relocation types, and
recommending that toolchains follow the GNU interpretation for maximum
compatibility.
Given that upstream llvm has never implemented the standard TLS model for
AArch64 so we have no binary legacy, synchronize with GCC so that we don't
create incompatible objects in the future. So far the only visible change
is in llvm-readobj as it can decode these relocations. Tthis change will
mean that llvm-readobj decodes the same way as GNU readelf.
fixes PR40507
llvm-svn: 367437
Summary:
While `-div-rem-pairs` pass can decompose rem in div+rem pair when div-rem pair
is unsupported by target, nothing performs the opposite fold.
We can't do that in InstCombine or DAGCombine since neither of those has access to TTI.
So it makes most sense to teach `-div-rem-pairs` about it.
If we matched rem in expanded form, we know we will be able to place div-rem pair
next to each other so we won't regress the situation.
Also, we shouldn't decompose rem if we matched already-decomposed form.
This is surprisingly straight-forward otherwise.
The original patch was committed in rL367288 but was reverted in rL367289
because it exposed pre-existing RAUW issues in internal data structures
of the pass; those now have been addressed in a previous patch.
https://bugs.llvm.org/show_bug.cgi?id=42673
Reviewers: spatel, RKSimon, efriedma, ZaMaZaN4iK, bogner
Reviewed By: bogner
Subscribers: bogner, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65298
llvm-svn: 367419
Summary:
`DivRemPairs` internally creates two maps:
* {sign, divident, divisor} -> div instruction
* {sign, divident, divisor} -> rem instruction
Then it iterates over rem map, and looks if there is an entry
in div map with the same key. Then depending on some internal logic
it may RAUW rem instruction with something else.
But if that rem instruction is an input to other div/rem,
then it was used as a key in these maps, so the old value (used in key)
is now dandling, because RAUW didn't update those maps.
And we can't even RAUW map keys in general, there's `ValueMap`,
but we don't have a single `Value` as key...
The bug was discovered via D65298, and the test there exists.
Now, i'm not sure how to expose this issue in trunk.
The bug is clearly there if i change the map keys to be `AssertingVH`/`PoisoningVH`,
but i guess this didn't miscompiled anything thus far?
I really don't think this is benin without that patch.
The fix is actually rather straight-forward - instead of trying to somehow
shoe-horn `ValueMap` here (doesn't fit, key isn't just `Value`), or writing a new
`ValueMap` with key being a struct of `Value`s, we can just have an intermediate
data structure - a vector, each entry containing matching `Div, Rem` pair,
and pre-filling it before doing any modifications.
This way we won't need to query map after doing RAUW, so no bug is possible.
Reviewers: spatel, bogner, RKSimon, craig.topper
Reviewed By: spatel
Subscribers: hiraditya, hans, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65451
llvm-svn: 367417
Summary:
This patch introduces a type to straighten LLVM's alignment management.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
The next step is to use this type throughout LLVM
Reviewers: jfb, jakehehrlich
Subscribers: mgorny, mgrang, dexonsmith, llvm-commits, courbet
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64790
llvm-svn: 367393
This error was never tested. In this patch I improved
the error message, added the test case and also simplified
the code that processes a similar error right below.
Differential revision: https://reviews.llvm.org/D65396
llvm-svn: 367391
Summary: The minimum compilers support all have alignas, and we don't use LLVM_ALIGNAS anywhere anymore. This also removes an MSVC diagnostic which, according to the comment above, isn't relevant anymore.
Reviewers: rnk
Subscribers: mgorny, jkorous, dexonsmith, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D65458
llvm-svn: 367383
AMDGPU uses some custom code predicates for testing alignments.
I'm still having trouble comprehending the behavior of predicate bits
in the PatFrag hierarchy. Any attempt to abstract these properties
unexpectdly fails to apply them.
llvm-svn: 367373
Add a new serializer, using a binary format based on the LLVM bitstream
format.
This format provides a way to serialize the remarks in two modes:
1) Separate mode: the metadata is separate from the remark entries.
2) Standalone mode: the metadata and the remark entries are in the same
file.
The format contains:
* a meta block: container version, container type, string table,
external file path, remark version
* a remark block: type, remark name, pass name, function name, debug
file, debug line, debug column, hotness, arguments (key, value, debug
file, debug line, debug column)
A string table is required for this format, which will be dumped in the
meta block to be consumed before parsing the remark blocks.
On clang itself, we noticed a size reduction of 13.4x compared to YAML,
and a compile-time reduction of between 1.7% and 3.5% on CTMark.
Differential Revision: https://reviews.llvm.org/D63466
Original llvm-svn: 367364
Revert llvm-svn: 367370
llvm-svn: 367372
Add a new serializer, using a binary format based on the LLVM bitstream
format.
This format provides a way to serialize the remarks in two modes:
1) Separate mode: the metadata is separate from the remark entries.
2) Standalone mode: the metadata and the remark entries are in the same
file.
The format contains:
* a meta block: container version, container type, string table,
external file path, remark version
* a remark block: type, remark name, pass name, function name, debug
file, debug line, debug column, hotness, arguments (key, value, debug
file, debug line, debug column)
A string table is required for this format, which will be dumped in the
meta block to be consumed before parsing the remark blocks.
On clang itself, we noticed a size reduction of 13.4x compared to YAML,
and a compile-time reduction of between 1.7% and 3.5% on CTMark.
Differential Revision: https://reviews.llvm.org/D63466
llvm-svn: 367364
Summary:
LoopRotate may simplify instructions, leading to the new instructions not having memory accesses created for them.
Allow this behavior, by allowing the new access to be null when the template is null, and looking upwards for the proper defined access when dealing with simplified instructions.
Reviewers: george.burgess.iv
Subscribers: jlebar, Prazek, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65338
llvm-svn: 367352
Summary:
In D37215, AssumeLikeInstruction are regarded as `willreturn`. In this patch, annotation is added to those which don't have `willreturn` now(`sideeffect, object_size, experimental_widenable_condition`).
Reviewers: jdoerfert, nikic, sstefan1
Reviewed By: nikic
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65455
llvm-svn: 367342
LLVM_ALIGNAS was removed from this class in http://llvm.org/r338099 but the comment was left there. The class is still sommewhat relevant despite the comment, let's keep it there with its one use.
llvm-svn: 367336
LoopInfo can be easily preserved by passing it to the functions that
modify the CFG (SplitCriticalEdge and MergeBlockIntoPredecessor.
SplitCriticalEdge also preserves LoopSimplify and LCSSA form when when passing in
LoopInfo. The test case shows that we preserve LoopSimplify and
LoopInfo. Adding addPreservedID(LCSSAID) did not preserve LCSSA for some
reason.
Also I am not sure if it is possible to preserve those in the new pass
manager, as they aren't analysis passes.
Reviewers: reames, hfinkel, davide, jdoerfert
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D65137
llvm-svn: 367332
The default mode is separate, where the metadata is serialized
separately from the remarks.
Another mode is the standalone mode, where the metadata is serialized
before the remarks, on the same stream.
llvm-svn: 367328