- This is designed to make it obvious that %clang_cc1 is a "test variable"
which is substituted. It is '%clang_cc1' instead of '%clang -cc1' because it
can be useful to redefine what gets run as 'clang -cc1' (for example, to set
a default target).
llvm-svn: 91446
overload candidates (but not the built-in ones). We still rely on the
underlying built-in semantic analysis to produce the initial
diagnostic, then print the candidates following that diagnostic.
One side advantage of this approach is that we can perform more validation
of C++'s operator overloading with built-in candidates vs. the
semantic analysis for those built-in operators: when there are no
viable candidates, we know to expect an error from the built-in
operator handling code. Otherwise, we are not modeling the built-in
semantics properly within operator overloading. This is checked as:
assert(Result.isInvalid() &&
"C++ binary operator overloading is missing
candidates!");
if (Result.isInvalid())
PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
The assert() catches cases where we're wrong in a +Asserts build. The
"if" makes sure that, if this happens in a production clang
(-Asserts), we still build the proper built-in operator and continue
on our merry way. This is effectively what happened before this
change, but we've added the assert() to catch more flies.
llvm-svn: 83175
heuristics to determine when it's useful to desugar a type for display
to the user. Introduce two C++-specific heuristics:
- For a qualified type (like "foo::bar"), only produce a new
desugred type if desugaring the qualified type ("bar", in this
case) produces something interesting. For example, if "foo::bar"
refers to a class named "bar", don't desugar. However, if
"foo::bar" refers to a typedef of something else, desugar to that
something else. This gives some useful desugaring such as
"foo::bar (aka 'int')".
- Don't desugar class template specialization types like
"basic_string<char>" down to their underlying "class
basic_string<char, char_traits<char>, allocator<char>>, etc.";
it's better just to leave such types alone.
Update diagnostics.html with some discussion and examples of type
preservation in C++, showing qualified names and class template
specialization types.
llvm-svn: 68207
specialization names. This way, we keep track of sugared types like
std::vector<Real>
I believe we are now using QualifiedNameTypes everywhere we can. Next
step: QualifiedDeclRefExprs.
llvm-svn: 67268