Casting between scalable vectors and fixed-length vectors doesn't make
sense. If one of the operands is scalable, the other has to be scalable
to be able to guarantee they have the same shape at runtime.
Differential Revision: https://reviews.llvm.org/D119568
This patch changes the syntax of omp.atomic.update to allow the other
dialects to modify the variable with appropriate operations in the
region.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D119522
Add verifier for gpu.alloc op to verify if the dimension operand counts
and symbol operand counts are same as their memref counterparts.
Differential Revision: https://reviews.llvm.org/D117427
Also, it seems Khronos has changed html spec format so small adjustment to script was needed.
Base op parsing is also probably broken.
Differential Revision: https://reviews.llvm.org/D119678
Adds a pointer type to EmitC. The emission of pointers is so far only
possible by using the `emitc.opaque` type
Co-authored-by: Simon Camphausen <simon.camphausen@iml.fraunhofer.de>
Reviewed By: jpienaar
Differential Revision: https://reviews.llvm.org/D119337
Index attributes had no default value, which means the attribute values had to be set on the operation. This revision adds a default parameter to `IndexAttrDef`. After the change, every index attribute has to define a default value. For example, we may define the following strides attribute:
```
```
When using the operation the default stride is used if the strides attribute is not set. The mechanism is implemented using `DefaultValuedAttr`.
Additionally, the revision uses the naming index attribute instead of attribute more consistently, which is a preparation for follow up revisions that will introduce function attributes.
Depends On D119125
Reviewed By: stellaraccident
Differential Revision: https://reviews.llvm.org/D119126
Previously, OpDSL did not support rank polymorphism, which required a separate implementation of linalg.fill. This revision extends OpDSL to support rank polymorphism for a limited class of operations that access only scalars and tensors of rank zero. At operation instantiation time, it scales these scalar computations to multi-dimensional pointwise computations by replacing the empty indexing maps with identity index maps. The revision does not change the DSL itself, instead it adapts the Python emitter and the YAML generator to generate different indexing maps and and iterators depending on the rank of the first output.
Additionally, the revision introduces a `linalg.fill_tensor` operation that in a future revision shall replace the current handwritten `linalg.fill` operation. `linalg.fill_tensor` is thus only temporarily available and will be renamed to `linalg.fill`.
Reviewed By: nicolasvasilache, stellaraccident
Differential Revision: https://reviews.llvm.org/D119003
Add new operations to the gpu dialect to represent device side
asynchronous copies. This also add the lowering of those operations to
nvvm dialect.
Those ops are meant to be low level and map directly to llvm dialects
like nvvm or rocdl.
We can further add higher level of abstraction by building on top of
those operations.
This has been discuss here:
https://discourse.llvm.org/t/modeling-gpu-async-copy-ampere-feature/4924
Differential Revision: https://reviews.llvm.org/D119191
If the result operand has a unit leading dim it is removed from all operands.
Reviewed By: ThomasRaoux
Differential Revision: https://reviews.llvm.org/D119206
Fix fold-memref-subview-ops for affine.load/store. We need to expand out
the affine apply on its operands.
Differential Revision: https://reviews.llvm.org/D119402
Reuse the higher precision F32 approximation for the F16 one (by expanding and
truncating). This is partly RFC as I'm not sure what the expectations are here
(e.g., these are only for F32 and should not be expanded, that reusing
higher-precision ones for lower precision is undesirable due to increased
compute cost and only approximations per exact type is preferred, or this is
appropriate [at least as fallback] but we need to see how to make it more
generic across all the patterns here).
Differential Revision: https://reviews.llvm.org/D118968
For 0-D as well as 1-D vectors, both these patterns should
return a failure as there is no need to collapse the shape
of the source. Currently, only 1-D vectors were handled. This
patch handles the 0-D case as well.
Reviewed By: Benoit, ThomasRaoux
Differential Revision: https://reviews.llvm.org/D119202
There are a few different test passes that check elementwise fusion in
Linalg. Consolidate them to a single pass controlled by different pass
options (in keeping with how `TestLinalgTransforms` exists).
There are a few different test passes that check elementwise fusion in
Linalg. Consolidate them to a single pass controlled by different pass
options (in keeping with how `TestLinalgTransforms` exists).
Fix the verification function of spirv::ConstantOp to allow nesting
array attributes.
Reviewed By: antiagainst
Differential Revision: https://reviews.llvm.org/D118939
* Implement `FlatAffineConstraints::getConstantBound(EQ)`.
* Inject a simpler constraint for loops that have at most 1 iteration.
* Taking into account constant EQ bounds of FlatAffineConstraint dims/symbols during canonicalization of the resulting affine map in `canonicalizeMinMaxOp`.
Differential Revision: https://reviews.llvm.org/D119153
This is both more efficient and more ergonomic to use, as inverting a
bit vector is trivial while inverting a set is annoying.
Sadly this leaks into a bunch of APIs downstream, so adapt them as well.
This would be NFC, but there is an ordering dependency in MemRefOps's
computeMemRefRankReductionMask. This is now deterministic, previously it
was dependent on SmallDenseSet's unspecified iteration order.
Differential Revision: https://reviews.llvm.org/D119076
Adapt `tileConsumerAndFuseProducers` to return failure if the generated tile loop nest is empty since all tile sizes are zero. Additionally, fix `LinalgTileAndFuseTensorOpsPattern` to return success if the pattern applied successfully.
Reviewed By: mravishankar
Differential Revision: https://reviews.llvm.org/D118878
Induction variable calculation was ignoring scf.for step value. Fix it to get
the correct induction variable value in the prologue.
Differential Revision: https://reviews.llvm.org/D118932
-- This commit adds a canonicalization pattern on scf.while to remove
the loop invariant arguments.
-- An argument is considered loop invariant if the iteration argument value is
the same as the corresponding one being yielded (at the same position) in both
the before/after block of scf.while.
-- For the arguments removed, their use within scf.while and their corresponding
scf.while's result are replaced with their corresponding initial value.
Signed-off-by: Abhishek Varma <abhishek.varma@polymagelabs.com>
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D116923
This is completely unused upstream, and does not really have well defined semantics
on what this is supposed to do/how this fits into the ecosystem. Given that, as part of
splitting up the standard dialect it's best to just remove this behavior, instead of try
to awkwardly fit it somewhere upstream. Downstream users are encouraged to
define their own operations that clearly can define the semantics of this.
This also uncovered several lingering uses of ConstantOp that weren't
updated to use arith::ConstantOp, and worked during conversions because
the constant was removed/converted into something else before
verification.
See https://llvm.discourse.group/t/standard-dialect-the-final-chapter/ for more discussion.
Differential Revision: https://reviews.llvm.org/D118654
This is part of the larger effort to split the standard dialect. This will also allow for pruning some
additional dependencies on Standard (done in a followup).
Differential Revision: https://reviews.llvm.org/D118202
This revision avoids incorrect hoisting of alloca'd buffers across an AutomaticAllocationScope boundary.
In the more general case, we will probably need a ParallelScope-like interface.
Differential Revision: https://reviews.llvm.org/D118768
Use type inference when building the TransferWriteOp in the TransferWritePermutationLowering. Previously, the result type has been set to Type() which triggers an assertion if the pattern is used with tensors instead of memrefs.
Reviewed By: springerm
Differential Revision: https://reviews.llvm.org/D118758
Following the discussion in D118318, mark `arith.addf/mulf` commutative.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D118600
Support affine.load/store ops in fold-memref-subview ops pass. The
existing pass just "inlines" the subview operation on load/stores by
inserting affine.apply ops in front of the memref load/store ops: this
is by design always consistent with the semantics on affine.load/store
ops and the same would work even more naturally/intuitively with the
latter.
Differential Revision: https://reviews.llvm.org/D118565