The closing namespace comment prevents clang-format from dropping a
blank line after the final test. Also add in a blank line (which
simplifies merging/rebasing/etc. WIP patches).
The name of the option is misleading and has been renamed by isl to
"serialize-sccs". Instead of also renaming the option, remove it.
The option is still accessible using
-polly-isl-arg=--no-schedule-serialize-sccs
The strongly typed expression representation classes supported
a representation of parentheses only around intrinsic types
with specific kinds. Parentheses around derived type variables
must also be preserved so that expressions may be distinguished
from variables; this distinction matters for actual arguments &
construct associations.
Differential Revision: https://reviews.llvm.org/D110355
If we applied a fix-it before evaluating an expression and that
expression didn't evaluate correctly, we should still tell users about
the fix-it we applied since that may be the reason why it didn't work
correctly.
Differential Revision: https://reviews.llvm.org/D109908
When generating code to add an element to SparseTensorCOO (e.g., when doing dense=>sparse conversion), we used to check for nonzero values on the runtime side, whereas now we generate MLIR code to do that check.
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D110121
Functions in static code that should be callable from JITed code must be exported. For dynamic libraries extern functions are exported by default. For exectuables, linkers usually strip them away unless we explicitly ask for keeping them.
Reviewed By: xgupta
Differential Revision: https://reviews.llvm.org/D110345
We should use IMAGE_REL_I386_SECREL in the i386 section of this file.
IMAGE_REL_I386_SECREL and IMAGE_REL_AMD64_SECREL have the same
numeric value 0xB, so this doesn't change behavior.
Two typos, one unsused include and some leftovers from the TargetProcessControl -> ExecutorProcessControl renaming
Reviewed By: xgupta
Differential Revision: https://reviews.llvm.org/D110260
Developers these days seem to argue over east vs west const like they used to argue over tabs vs whitespace or the various bracing style. These previous arguments were mainly eliminated with tools like `clang-format` that allowed those rules to become part of your style guide. Anyone who has been using clang-format in a large team over the last couple of years knows that we don't have those religious arguments any more, and code reviews are more productive.
https://www.youtube.com/watch?v=fv--IKZFVO8https://mariusbancila.ro/blog/2018/11/23/join-the-east-const-revolution/https://www.youtube.com/watch?v=z6s6bacI424
The purpose of this revision is to try to do the same for the East/West const discussion. Move the debate into the style guide and leave it there!
In addition to the new `ConstStyle: Right` or `ConstStyle: Left` there is an additional command-line argument `--const-style=left/right` which would allow an individual developer to switch the source back and forth to their own style for editing, and back to the committed style before commit. (you could imagine an IDE might offer such a switch)
The revision works by implementing a separate pass of the Annotated lines much like the SortIncludes and then create replacements for constant type declarations.
Differential Revision: https://reviews.llvm.org/D69764
Some of these test show very poor code generation. Updating the tests
to make the tests more maintainable and prevent problems from being
hidden behind badly written test checks. Also in some of them the check
lines were using incorrect prefixes.
These are not-quite auto-generated. They are generated with the normal
update scripts and then uninteresting checks are removed, which at least
makes the test _more_ maintainable without materially changing what they
are testing.
I have otherwise attempted to not alter what is tested.
Turn (and (shr x, c2), c1) -> (slli (srli x, c2+c3), c3) if c1 is a
shifted mask with c2 leading zeros and c3 trailing zeros.
When the leading zeros is C2+32 we can use SRLIW in place of SRLI.
These tests have C1 as a shifted mask having C2 leading zeros and some
number of trailing zeros, C3. We can select this as
(slli (srli x, C2+C3), C3) or (slli (srliw x, C2+C3), C3).
This function can be adapted to solve bugs like PR51245,
but it could require differentiating the combiner timing
between the existing and new transforms.
Switch the gdb-remote client logic to use local (LLDB) register numbers
in value_regs/invalidate_regs rather than remote regnos. This involves
translating regnos received from lldb-server.
Differential Revision: https://reviews.llvm.org/D110027
Refactor remote register getters to collect them into a local
std::vector rather than adding them straight into DynamicRegisterInfo.
The purpose of this change is to lay groundwork for switching value_regs
and invalidate_regs to use local LLDB register numbers rather than
remote numbers.
Differential Revision: https://reviews.llvm.org/D110025
LLDB has a bunch of code that implements REPL support, but all that code is
unreachable as no language in master currently has an implemented REPL backend.
The only REPL that exists is in the downstream Swift fork. All patches for this
generic REPL code therefore also only have tests downstream which is clearly not
a good situation.
This patch implements a basic C language REPL on top of LLDB's REPL framework.
Beside implementing the REPL interface and hooking it up into the plugin
manager, the only other small part of this patch is making the `--language` flag
of the expression command compatible with the `--repl` flag. The `--repl` flag
uses the value of `--language` to see which REPL should be started, but right
now the `--language` flag is only available in OptionGroups 1 and 2, but not in
OptionGroup 3 where the `--repl` flag is declared.
The REPL currently can currently only start if a running target exists. I'll add
the 'create and run a dummy executable' logic from Swift (which is requires when
doing `lldb --repl`) when I have time to translate all this logic to something
that will work with Clang.
I should point out that the REPL currently uses the C expression parser's
approach to persistent variables where only result variables and the ones
starting with a '$' are transferred between expressions. I'll fix that in a
follow up patch. Also the REPL currently doesn't work in a non-interactive
terminal. This seems to be fixed in the Swift fork, so I assume one of our many
REPL downstream changes addresses the issue.
Reviewed By: JDevlieghere
Differential Revision: https://reviews.llvm.org/D87281
Some tests with binary IDs would fail with error: no profile can be merged.
This is because raw profiles could have unaligned headers when emitting binary
IDs. This means padding should be emitted after binary IDs are emitted to
ensure everything else is aligned. This patch accounts for that padding in
__llvm_write_binary_ids.
Differential Revision: https://reviews.llvm.org/D110188
Count input characters corresponding to formatted edit descriptors
for READ(SIZE=); count output bytes for INQUIRE(IOLENGTH=).
The I/O APIs GetSize() and GetLength() were adjusted to return
std::size_t as function results.
Basic unit tests were added (and others fixed).
Differential Revision: https://reviews.llvm.org/D110291
That macro was being defined but not used anywhere in libc++, so it
must be safe to remove it.
As a fly-by fix, also remove mentions of this macro in other places
in LLVM, to make sure they were not depending on the value defined in
libc++.
Differential Revision: https://reviews.llvm.org/D110289
fir.cmpf op is not necessary anymore as it is replaced by mlir.cmpf.
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: jeanPerier
Differential Revision: https://reviews.llvm.org/D110327
Co-authored-by: schweitzpgi
Co-authored-by: jeanPerier
This patch is part of the upstreaming effort from fir-dev branch.
Rename the function so the name conveys better what it does.
Reviewed By: jeanPerier
Differential Revision: https://reviews.llvm.org/D110323
Co-authored-by: schweitz
Co-authored-by: jeanPerier
This is basically D108837 but for jump threading. Free instructions
should be ignored for the threading decision. JumpThreading already
skips some free instructions (like pointer bitcasts), but does not
skip various free intrinsics -- in fact, it currently gives them a
fairly large cost of 2.
Differential Revision: https://reviews.llvm.org/D110290
While both GlobalAlias and GlobalIFunc are GlobalIndirectSymbol, their
`getIndirectSymbol()` usage is quite different (GlobalIFunc's resolver
is an entity different from GlobalIFunc itself).
As discussed on https://lists.llvm.org/pipermail/llvm-dev/2020-September/144904.html
("[IR] Modelling of GlobalIFunc"), the name `getBaseObject` is confusing when
used with GlobalIFunc.
To resolve the confusion:
* Move GloalIndirectSymol::getBaseObject to GlobalAlias:: (GlobalIFunc should use `getResolver` instead)
* Change GlobalValue::getBaseObject not to inspect GlobalIFunc. Note: the function has 7 references.
* Add GlobalIFunc::getResolverFunction to peel off potential ConstantExpr indirection
(`strlen` in `test/LTO/Resolution/X86/ifunc.ll`)
Note: GlobalIFunc::getResolver (like GlobalAlias::getAliasee which does not peel
off ConstantExpr indirection) is kept to be used by ValueEnumerator.
Reviewed By: ibookstein
Differential Revision: https://reviews.llvm.org/D109792
The fix applied in D23303 "LiveIntervalAnalysis: fix a crash in repairOldRegInRange"
was over-zealous. It would bail out when the end of the range to be
repaired was in the middle of the first segment of the live range of
Reg, which was always the case when the range contained a single def of
Reg.
This patch fixes it as suggested by Matthias Braun in post-commit review
on the original patch, and tests it by adding -early-live-intervals to
a selection of existing lit tests that now pass.
(Note that D23303 was originally applied to fix a crash in
SILoadStoreOptimizer, but that is now moot since D23814 updated
SILoadStoreOptimizer to run before scheduling so it no longer has to
update live intervals.)
Differential Revision: https://reviews.llvm.org/D110238
This is a re-application of da0592e4c8 which was reverted in
1454018dc1 because it was incompatible with older CMakes.
Instead, disable the benchmarks when CMake is too old to
support those idioms.
Differential Revision: https://reviews.llvm.org/D110285
This patch adds range checking for some Power10 altivec builtins and
changes the signature of a builtin to match documentation. For `vec_cntm`,
range checking is done via SemaChecking. For `vec_splati_ins`, the second
argument is masked to extract the 0th bit so that we always receive either a `0`
or a `1`.
Reviewed By: lei, amyk
Differential Revision: https://reviews.llvm.org/D109710
Switch the gdb-remote client logic to use local (LLDB) register numbers
in value_regs/invalidate_regs rather than remote regnos. This involves
translating regnos received from lldb-server.
Differential Revision: https://reviews.llvm.org/D110027
Refactor remote register getters to collect them into a local
std::vector rather than adding them straight into DynamicRegisterInfo.
The purpose of this change is to lay groundwork for switching value_regs
and invalidate_regs to use local LLDB register numbers rather than
remote numbers.
Differential Revision: https://reviews.llvm.org/D110025
The pass amdgpu-propagate-attributes ("Early/Late propagate attributes
from kernels to functions") is currently run also for shaders, where
it does nothing. Modify the check so the pass only processes functions
for kernels.
Differential Revision: https://reviews.llvm.org/D109961