Commit Graph

14 Commits

Author SHA1 Message Date
Matt Arsenault 20c43d6bd5 OpaquePtr: Bulk update tests to use typed sret 2020-11-20 17:58:26 -05:00
Philip Reames 48f4312d4e Remove inline gc arguments from statepoints
The "gc-live" operand bundles were recently added, and all tests have been updated to use that format.  A migration period was provided, though it's worth noting these intrinsics are experimental, so formally there is no compatibile requirement.

This is an extension to a96fc46.  "gc-live" hadn't been implemented at the point that patch was initially posted.
2020-08-14 19:44:24 -07:00
Philip Reames a96fc4638b Remove deopt and gc transition arguments from gc.statepoint intrinsic
(Forgot to land this a couple of weeks back.)

In a recent series of changes, I've introduced support for using the respective operand bundle kinds on the statepoint. At the moment, code supports either/or, but there's no need to keep the old support around. For the moment, I am simply changing the specification and verifier to require zero length argument sets in the intrinsic.

The intrinsic itself is experimental. Given that, there's no forward serialization needed. The in tree uses and generation have already been updated to use the new operand bundle based forms, the only folks broken by the change will be those with frontends generating statepoints directly and the updates should be easy.

Why not go ahead and just remove the arguments entirely? Well, I plan to. But while working on this I've found that almost all of the arguments to the statepoint can be expressed via operand bundles or attributes. Given that, I'm planning a radical simplification of the arguments and figured I'd do one update not several small ones.

Differential Revision: https://reviews.llvm.org/D80892
2020-08-14 16:07:40 -07:00
Than McIntosh 4a1c5da7ac [IRVerifier] Allow StructRet in statepoint
Summary:
StructRet attribute is not allowed in vararg calls. The statepoint
intrinsic is vararg, but the wrapped function may be not. Allow
calls of statepoint with StructRet arg, as long as the wrapped
function is not vararg.

Reviewers: thanm, anna

Reviewed By: anna

Subscribers: anna, llvm-commits

Differential Revision: https://reviews.llvm.org/D53602

llvm-svn: 347050
2018-11-16 14:28:05 +00:00
Chen Li d71999ef1b [gc.statepoint] Change gc.statepoint intrinsic's return type to token type instead of i32 type
Summary: This patch changes gc.statepoint intrinsic's return type to token type instead of i32 type. Using token types could prevent LLVM to merge different gc.statepoint nodes into PHI nodes and cause further problems with gc relocations. The patch also changes the way on how gc.relocate and gc.result look for their corresponding gc.statepoint on unwind path. The current implementation uses the selector value extracted from a { i8*, i32 } landingpad as a hook to find the gc.statepoint, while the patch directly uses a token type landingpad (http://reviews.llvm.org/D15405) to find the gc.statepoint. 

Reviewers: sanjoy, JosephTremoulet, pgavlin, igor-laevsky, mjacob

Subscribers: reames, mjacob, sanjoy, llvm-commits

Differential Revision: http://reviews.llvm.org/D15662

llvm-svn: 256443
2015-12-26 07:54:32 +00:00
David Majnemer 7fddeccb8b Move the personality function from LandingPadInst to Function
The personality routine currently lives in the LandingPadInst.

This isn't desirable because:
- All LandingPadInsts in the same function must have the same
  personality routine.  This means that each LandingPadInst beyond the
  first has an operand which produces no additional information.

- There is ongoing work to introduce EH IR constructs other than
  LandingPadInst.  Moving the personality routine off of any one
  particular Instruction and onto the parent function seems a lot better
  than have N different places a personality function can sneak onto an
  exceptional function.

Differential Revision: http://reviews.llvm.org/D10429

llvm-svn: 239940
2015-06-17 20:52:32 +00:00
Sanjoy Das a1d39ba940 [Statepoints] Support for "patchable" statepoints.
Summary:
This change adds two new parameters to the statepoint intrinsic, `i64 id`
and `i32 num_patch_bytes`.  `id` gets propagated to the ID field
in the generated StackMap section.  If the `num_patch_bytes` is
non-zero then the statepoint is lowered to `num_patch_bytes` bytes of
nops instead of a call (the spill and reload code remains unchanged).
A non-zero `num_patch_bytes` is useful in situations where a language
runtime requires complete control over how a call is lowered.

This change brings statepoints one step closer to patchpoints.  With
some additional work (that is not part of this patch) it should be
possible to get rid of `TargetOpcode::STATEPOINT` altogether.

PlaceSafepoints generates `statepoint` wrappers with `id` set to
`0xABCDEF00` (the old default value for the ID reported in the stackmap)
and `num_patch_bytes` set to `0`.  This can be made more sophisticated
later.

Reviewers: reames, pgavlin, swaroop.sridhar, AndyAyers

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D9546

llvm-svn: 237214
2015-05-12 23:52:24 +00:00
Pat Gavlin cc0431d1c0 Extend the statepoint intrinsic to allow statepoints to be marked as transitions from GC-aware code to code that is not GC-aware.
This changes the shape of the statepoint intrinsic from:

  @llvm.experimental.gc.statepoint(anyptr target, i32 # call args, i32 unused, ...call args, i32 # deopt args, ...deopt args, ...gc args)

to:

  @llvm.experimental.gc.statepoint(anyptr target, i32 # call args, i32 flags, ...call args, i32 # transition args, ...transition args, i32 # deopt args, ...deopt args, ...gc args)

This extension offers the backend the opportunity to insert (somewhat) arbitrary code to manage the transition from GC-aware code to code that is not GC-aware and back.

In order to support the injection of transition code, this extension wraps the STATEPOINT ISD node generated by the usual lowering lowering with two additional nodes: GC_TRANSITION_START and GC_TRANSITION_END. The transition arguments that were passed passed to the intrinsic (if any) are lowered and provided as operands to these nodes and may be used by the backend during code generation.

Eventually, the lowering of the GC_TRANSITION_{START,END} nodes should be informed by the GC strategy in use for the function containing the intrinsic call; for now, these nodes are instead replaced with no-ops.

Differential Revision: http://reviews.llvm.org/D9501

llvm-svn: 236888
2015-05-08 18:07:42 +00:00
David Blaikie 445e3fbc54 [opaque pointer type] Add textual IR support for explicit type parameter to the invoke instruction
Same as r235145 for the call instruction - the justification, tradeoffs,
etc are all the same. The conversion script worked the same without any
false negatives (after replacing 'call' with 'invoke').

llvm-svn: 235755
2015-04-24 19:32:54 +00:00
David Blaikie 23af64846f [opaque pointer type] Add textual IR support for explicit type parameter to the call instruction
See r230786 and r230794 for similar changes to gep and load
respectively.

Call is a bit different because it often doesn't have a single explicit
type - usually the type is deduced from the arguments, and just the
return type is explicit. In those cases there's no need to change the
IR.

When that's not the case, the IR usually contains the pointer type of
the first operand - but since typed pointers are going away, that
representation is insufficient so I'm just stripping the "pointerness"
of the explicit type away.

This does make the IR a bit weird - it /sort of/ reads like the type of
the first operand: "call void () %x(" but %x is actually of type "void
()*" and will eventually be just of type "ptr". But this seems not too
bad and I don't think it would benefit from repeating the type
("void (), void () * %x(" and then eventually "void (), ptr %x(") as has
been done with gep and load.

This also has a side benefit: since the explicit type is no longer a
pointer, there's no ambiguity between an explicit type and a function
that returns a function pointer. Previously this case needed an explicit
type (eg: a function returning a void() function was written as
"call void () () * @x(" rather than "call void () * @x(" because of the
ambiguity between a function returning a pointer to a void() function
and a function returning void).

No ambiguity means even function pointer return types can just be
written alone, without writing the whole function's type.

This leaves /only/ the varargs case where the explicit type is required.

Given the special type syntax in call instructions, the regex-fu used
for migration was a bit more involved in its own unique way (as every
one of these is) so here it is. Use it in conjunction with the apply.sh
script and associated find/xargs commands I've provided in rr230786 to
migrate your out of tree tests. Do let me know if any of this doesn't
cover your cases & we can iterate on a more general script/regexes to
help others with out of tree tests.

About 9 test cases couldn't be automatically migrated - half of those
were functions returning function pointers, where I just had to manually
delete the function argument types now that we didn't need an explicit
function type there. The other half were typedefs of function types used
in calls - just had to manually drop the * from those.

import fileinput
import sys
import re

pat = re.compile(r'((?:=|:|^|\s)call\s(?:[^@]*?))(\s*$|\s*(?:(?:\[\[[a-zA-Z0-9_]+\]\]|[@%](?:(")?[\\\?@a-zA-Z0-9_.]*?(?(3)"|)|{{.*}}))(?:\(|$)|undef|inttoptr|bitcast|null|asm).*$)')
addrspace_end = re.compile(r"addrspace\(\d+\)\s*\*$")
func_end = re.compile("(?:void.*|\)\s*)\*$")

def conv(match, line):
  if not match or re.search(addrspace_end, match.group(1)) or not re.search(func_end, match.group(1)):
    return line
  return line[:match.start()] + match.group(1)[:match.group(1).rfind('*')].rstrip() + match.group(2) + line[match.end():]

for line in sys.stdin:
  sys.stdout.write(conv(re.search(pat, line), line))

llvm-svn: 235145
2015-04-16 23:24:18 +00:00
Igor Laevsky 9570ff94f7 Implement invoke statepoint verification.
Differential Revision: http://reviews.llvm.org/D7366

llvm-svn: 229840
2015-02-19 11:28:47 +00:00
Igor Laevsky b2b31cfc3f Testing commit access
llvm-svn: 229653
2015-02-18 09:11:50 +00:00
Philip Reames c2f99b421b Fix statepoint verifier tests to actually test verifier.
Patch by: Igor Laevsky

"Statepoint verifier tests were using wrong names for the statepoint and gc.relocate intrinsics. This change renames them to use correct names and fixes all uncovered issues."

Differential Revision: http://reviews.llvm.org/D7266

llvm-svn: 227636
2015-01-30 23:18:42 +00:00
Philip Reames 337c4bd4ab [Statepoints 1/4] Statepoint infrastructure for garbage collection: IR Intrinsics
The statepoint intrinsics are intended to enable precise root tracking through the compiler as to support garbage collectors of all types. The addition of the statepoint intrinsics to LLVM should have no impact on the compilation of any program which does not contain them. There are no side tables created, no extra metadata, and no inhibited optimizations.

A statepoint works by transforming a call site (or safepoint poll site) into an explicit relocation operation. It is the frontend's responsibility (or eventually the safepoint insertion pass we've developed, but that's not part of this patch series) to ensure that any live pointer to a GC object is correctly added to the statepoint and explicitly relocated. The relocated value is just a normal SSA value (as seen by the optimizer), so merges of relocated and unrelocated values are just normal phis. The explicit relocation operation, the fact the statepoint is assumed to clobber all memory, and the optimizers standard semantics ensure that the relocations flow through IR optimizations correctly.

This is the first patch in a small series.  This patch contains only the IR parts; the documentation and backend support will be following separately.  The entire series can be seen as one combined whole in http://reviews.llvm.org/D5683.

Reviewed by: atrick, ributzka

llvm-svn: 223078
2014-12-01 21:18:12 +00:00