Summary:
IsOverload has a param named UseUsingDeclRules. But as far as I can
tell, it should be called UseMemberUsingDeclRules. That is, it only
applies to "using" declarations inside classes or structs.
Reviewers: rsmith
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D18538
llvm-svn: 264920
Summary:
* -fcuda-target-overloads
Previously unconditionally set to true by the driver. Necessary for
correct functioning of the compiler -- our CUDA headers wrapper won't
compile without this.
* -fcuda-disable-target-call-checks
Previously unconditionally set to true by the driver. Necessary to
compile almost any external CUDA code -- almost all libraries assume
that host+device code can call host or device functions.
* -fcuda-allow-host-calls-from-host-device
No effect when target overloading is enabled.
Reviewers: tra
Subscribers: rsmith, cfe-commits
Differential Revision: http://reviews.llvm.org/D18416
llvm-svn: 264739
Also includes a minor ``enable_if`` docs update.
Currently, our address-of overload machinery will only allow implicit
conversions of overloaded functions to void* in C. For example:
```
void f(int) __attribute__((overloadable));
void f(double) __attribute__((overloadable, enable_if(0, "")));
void *fp = f; // OK. This is C and the target is void*.
void (*fp2)(void) = f; // Error. This is C, but the target isn't void*.
```
This patch makes the assignment of `fp2` select the `f(int)` overload,
rather than emitting an error (N.B. you'll still get a warning about the
`fp2` assignment if you use -Wincompatible-pointer-types).
Differential Revision: http://reviews.llvm.org/D13704
llvm-svn: 264132
Some functions can't have their address taken. If we encounter an
overload set where only one of the candidates can have its address
taken, we should automatically select that candidate in cast
expressions.
Differential Revision: http://reviews.llvm.org/D17701
llvm-svn: 263887
Similar to the template cases in r262050, when a C++ method in an
unavailable struct/class calls unavailable API, don't diagnose an error.
I.e., this case was failing:
void foo() __attribute__((unavailable));
struct __attribute__((unavailable)) A {
void bar() { foo(); }
};
Since A is unavailable, A::bar is allowed to call foo. However, we were
emitting a diagnostic here. This commit checks up the context chain
from A::bar, in a manner inspired by SemaDeclAttr.cpp:isDeclUnavailable.
I expected to find other related issues but failed to trigger them:
- I wondered if DeclBase::getAvailability should check for
`TemplateDecl` instead of `FunctionTemplateDecl`, but I couldn't find
a way to trigger this. I left behind a few extra tests to make sure
we don't regress.
- I wondered if Sema::isFunctionConsideredUnavailable should be
symmetric, checking up the context chain of the callee (this commit
only checks up the context chain of the caller). However, I couldn't
think of a testcase that didn't require first referencing the
unavailable type; this, we already diagnose.
rdar://problem/25030656
llvm-svn: 262921
to allow arbitrary data to be associated with a parameter.
Also, fix a bug where we apparently haven't been serializing
this information for the last N years.
llvm-svn: 262278
__global__ functions are present on both host and device side,
so providing __host__ or __device__ overloads is not going to
do anything useful.
llvm-svn: 261778
This is an artefact of split-mode CUDA compilation that we need to
mimic. HD functions are sometimes allowed to call H or D functions. Due
to split compilation mode device-side compilation will not see host-only
function and thus they will not be considered at all. For clang both H
and D variants will become function overloads visible to
compiler. Normally target attribute is considered only if C++ rules can
not determine which function is better. However in this case we need to
ignore functions that would not be present during current compilation
phase before we apply normal overload resolution rules.
Changes:
* introduced another level of call preference to better describe
possible call combinations.
* removed WrongSide functions from consideration if the set contains
SameSide function.
* disabled H->D, D->H and G->H calls. These combinations are
not allowed by CUDA and we were reluctantly allowing them to work
around device-side calls to math functions in std namespace.
We no longer need it after r258880.
Differential Revision: http://reviews.llvm.org/D16870
llvm-svn: 260697
For an explicit specialization, we first build a FunctionDecl, and then
we call SubstDecl() on it to build a second FunctionDecl, which has the
first FunctionDecl as canonical decl.
The address of an explicit specialization of function template used to be the
canonical decl of the FunctionDecl. This is different from all the other
DeduceTemplateArguments() calls in SemaOverload, and since the canonical decl
isn't visited by ParentMap while the redecl is, it also made ParentMap assert
when computing the parent of a address-of-explicit-specialization-fun-template.
To fix, remove the getCanonicalDecl() call. No behavior difference for clang,
but it fixes an assert in ParentMap (which is e.g. used by libTooling).
llvm-svn: 260159
-Wdelete-non-virtual-dtor warns if A is a type with virtual functions but
without virtual dtor has its constructor called via `delete a`. This makes the
warning also fire if the dtor is called via `a->~A()`. This would've found a
security bug in Chromium at compile time. Fixes PR26137.
To fix the warning, add a virtual destructor, make the class final, or remove
its other virtual methods. If you want to silence the warning, there's also
a fixit that shows how:
test.cc:12:3: warning: destructor called on 'B' ... [-Wdelete-non-virtual-dtor]
b->~B();
^
test.cc:12:6: note: qualify call to silence this warning
b->~B();
^
B::
http://reviews.llvm.org/D16206
llvm-svn: 257939
We were emitting diagnostics from our shiny new C-only overload
resolution mode. This patch attempts to silence all such diagnostics.
This fixes PR26085.
Differential Revision: http://reviews.llvm.org/D16159
llvm-svn: 257710
In {CG,}ExprConstant.cpp, we weren't treating vector splats properly.
This patch makes us treat splats more properly.
Additionally, this patch adds a new cast kind which allows a bool->int
cast to result in -1 or 0, instead of 1 or 0 (for true and false,
respectively), so we can sanely model OpenCL bool->int casts in the AST.
Differential Revision: http://reviews.llvm.org/D14877
llvm-svn: 257559
Given an expression like `(&Foo)();`, we perform overload resolution as
if we are calling `Foo` directly. This causes problems if `Foo` is a
function that can't have its address taken. This patch teaches overload
resolution to ignore functions that can't have their address taken in
such cases.
Differential Revision: http://reviews.llvm.org/D15590
llvm-svn: 257016
by overload resolution because deduction succeeds, but the substituted
parameter type for some parameter (with deduced type) doesn't exactly match the
corresponding adjusted argument type.
llvm-svn: 256657
Doing so required separating them so that the former doesn't inherit
from the latter anymore. Investigating that, it became clear that the
inheritance wasn't actually providing real value in any case.
So also:
- Remove a bunch of redundant functions (getExplicitTemplateArgs,
getOptionalExplicitTemplateArgs) on various Expr subclasses which
depended on the inheritance relationship.
- Switched external callers to use pre-existing accessors that return the
data they're actually interested in (getTemplateArgs,
getNumTemplateArgs, etc).
- Switched internal callers to use pre-existing getTemplateKWAndArgsInfo.
llvm-svn: 256359
is complete (with an error produced if not) and a function that merely queries
whether the type is complete. Either way we'll trigger instantiation if
necessary, but only the former will diagnose and recover from missing module
imports.
The intent of this change is to prevent a class of bugs where code would call
RequireCompleteType(..., 0) and then ignore the result. With modules, we must
check the return value and use it to determine whether the definition of the
type is visible.
This also fixes a debug info quality issue: calls to isCompleteType do not
trigger the emission of debug information for a type in limited-debug-info
mode. This allows us to avoid emitting debug information for type definitions
in more cases where we believe it is safe to do so.
llvm-svn: 256049
for the derived class into it. This is mostly just a cleanup, but could in
principle be a bugfix if there is some codepath that reaches here and didn't
previously require a complete type (I couldn't find any such codepath, though).
llvm-svn: 256037
The introduction of pass_object_size fixed a few bugs related to taking
the address of a function with enable_if attributes. This patch adds
tests for the cases that were fixed.
llvm-svn: 254646
`pass_object_size` is our way of enabling `__builtin_object_size` to
produce high quality results without requiring inlining to happen
everywhere.
A link to the design doc for this attribute is available at the
Differential review link below.
Differential Revision: http://reviews.llvm.org/D13263
llvm-svn: 254554
the linkage of the enumeration. For enumerators of unnamed enumerations, extend
the -Wmodules-ambiguous-internal-linkage extension to allow selecting an
arbitrary enumerator (but only if they all have the same value, otherwise it's
ambiguous).
llvm-svn: 253010
internal linkage entities in different modules from r250884 to apply to all
names, not just function names.
This is really awkward: we don't want to merge internal-linkage symbols from
separate modules, because they might not actually be defining the same entity.
But we don't want to reject programs that use such an ambiguous symbol if those
internal-linkage symbols are in fact equivalent. For now, we're resolving the
ambiguity by picking one of the equivalent definitions as an extension.
llvm-svn: 252063
We permit implicit conversion from pointer-to-function to
pointer-to-object when -fms-extensions is specified. This is rather
unfortunate, move this into -fms-compatibility and only permit it within
system headers unless -Wno-error=microsoft-cast is specified.
llvm-svn: 251738
headers. If those headers end up being textually included twice into the same
module, we get ambiguity errors.
Work around this by downgrading the ambiguity error to a warning if multiple
identical internal-linkage functions appear in an overload set, and just pick
one of those functions as the lookup result.
llvm-svn: 250884
Previously, our logic when taking the address of an overloaded function
would not consider enable_if attributes, so long as all of the enable_if
conditions on a given candidate were true. So, two functions with
identical signatures (one with enable_if attributes, the other without),
would be considered equally good overloads. If we were calling the
function instead of taking its address, then the function with enable_if
attributes would be preferred.
This patch makes us prefer the candidate with enable_if regardless of if
we're calling or taking the address of an overloaded function.
Differential Revision: http://reviews.llvm.org/D13795
llvm-svn: 250486
This fixes a bug where one can take the address of a conditionally
enabled function to drop its enable_if guards. For example:
int foo(int a) __attribute__((enable_if(a > 0, "")));
int (*p)(int) = &foo;
int result = p(-1); // compilation succeeds; calls foo(-1)
Overloading logic has been updated to reflect this change, as well.
Functions with enable_if attributes that are always true are still
allowed to have their address taken.
Differential Revision: http://reviews.llvm.org/D13607
llvm-svn: 250090
Fixed a bug where we'd emit multiple diagnostics if there was a problem
taking the address of an overloaded template function.
Differential Revision: http://reviews.llvm.org/D13664
llvm-svn: 250078
C allows for some implicit conversions that C++ does not, e.g. void* ->
char*. This patch teaches clang that these conversions are okay when
dealing with overloads in C.
Differential Revision: http://reviews.llvm.org/D13604
llvm-svn: 249995
This patch fixes the order in which we evaluate the different ways that
a function call could be disallowed. Now, if you call a non-overloaded
function with an incomplete type and failing enable_if, we'll prioritize
reporting the more obvious error (use of incomplete type) over reporting
the failing enable_if.
Thanks to Ettore Speziale for the patch!
llvm-svn: 248595
and fix the only code that was depending on this so that it sets all the
relevant flags appropriately.
No functionality change intended.
llvm-svn: 248430
The patch makes it possible to parse CUDA files that contain host/device
functions with identical signatures, but different attributes without
having to physically split source into host-only and device-only parts.
This change is needed in order to parse CUDA header files that have
a lot of name clashes with standard include files.
Gory details are in design doc here: https://goo.gl/EXnymm
Feel free to leave comments there or in this review thread.
This feature is controlled with CC1 option -fcuda-target-overloads
and is disabled by default.
Differential Revision: http://reviews.llvm.org/D12453
llvm-svn: 248295
The type of a member pointer is incomplete if it has no inheritance
model. This lets us reuse more general logic already embedded in clang.
llvm-svn: 247346
-fapple-kext is an exception because calls will still go through
the vtable in that mode. Add a note to make the user aware of that.
PR: 23215
Differential Revision: http://reviews.llvm.org/D10935
llvm-svn: 242246
The __kindof type qualifier can be applied to Objective-C object
(pointer) types to indicate id-like behavior, which includes implicit
"downcasting" of __kindof types to subclasses and id-like message-send
behavior. __kindof types provide better type bounds for substitutions
into unspecified generic types, which preserves more type information.
llvm-svn: 241548
The patch is generated using this command:
$ tools/extra/clang-tidy/tool/run-clang-tidy.py -fix \
-checks=-*,llvm-namespace-comment -header-filter='llvm/.*|clang/.*' \
work/llvm/tools/clang
To reduce churn, not touching namespaces spanning less than 10 lines.
llvm-svn: 240270
This generalizes the checking of null arguments to also work with
values of pointer-to-function, reference-to-function, and block
pointer type, using the nullability information within the underling
function prototype to extend non-null checking, and diagnoses returns
of 'nil' within a function with a __nonnull return type.
Note that we don't warn about nil returns from Objective-C methods,
because it's common for Objective-C methods to mimic the nil-swallowing
behavior of the receiver by checking ostensibly non-null parameters
and returning nil from otherwise non-null methods in that
case.
It also diagnoses (via a separate flag) conversions from nullable to
nonnull pointers. It's a separate flag because this warning can be noisy.
llvm-svn: 240153
The underlying problem in PR23823 already existed before my recent change
in r239558, but that change made it worse (failing not only for undeclared
symbols, but also failed overload resolution). This makes Clang not try to
delay the lookup in SFINAE context. I assume no current code is relying on
SFINAE working with lookups that need to be delayed, because that never
seems to have worked.
Differential Revision: http://reviews.llvm.org/D10417
llvm-svn: 239639
This patch does two things in order to enable compilation of the problematic code in PR23810:
1. In Sema::buildOverloadedCallSet, it postpones lookup for MS mode when no
viable candidate is found in the overload set. Previously, lookup would only
be postponed here if the overload set was empty.
2. Make BuildRecoveryCallExpr call Sema::DiagnoseEmptyLookup under more circumstances.
There is a comment in DiagnoseTwoPhaseLookup that says "Don't diagnose names we find in
classes; we get much better diagnostics for these from DiagnoseEmptyLookup." The problem
was that DiagnoseEmptyLookup might not get called later, and we failed to recover.
Differential Revision: http://reviews.llvm.org/D10369
llvm-svn: 239558
integral promotion only if it converts to the underlying type or its promoted
type, not if it converts to the promoted type that the bitfield would have it
if were of the underlying type.
llvm-svn: 233457
selects a deleted function, the outer function is still a candidate even though
the initialization sequence is "otherwise ill-formed".
llvm-svn: 227169
The improved completion in call context now works with:
- Functions.
- Member functions.
- Constructors.
- New expressions.
- Function call expressions.
- Template variants of the previous.
There are still rough edges to be fixed:
- Provide support for optional parameters. (fix known)
- Provide support for member initializers. (fix known)
- Provide support for variadic template functions. (fix unknown)
- Others?
llvm-svn: 226670
ignore it during overload resolution when initializing
X from a value of type cv X.
Previously, our rule here only ignored specializations
of constructor templates. That's probably because the
standard says that constructors are outright ill-formed
if their first parameter is literally X and they're
callable with one argument. However, Clang only
enforces that prohibition against non-implicit
instantiations; I'm not sure why, but it seems to be
deliberate. Given that, the most sensible thing to
do is to just ignore the "illegal" constructor
regardless of where it came from.
Also, stop ignoring such constructors silently:
print a note explaining why they're being ignored.
Fixes <rdar://19199836>.
llvm-svn: 224205
We don't yet support pointer-to-member template arguments that have undergone
pointer-to-member conversions, mostly because we don't have a mangling for them yet.
llvm-svn: 222807
Summary:
We have this error from a while (Wed Jun 15 18:02:42 2011
r133103)
Reviewers: rsmith
Reviewed By: rsmith
Differential Revision: http://reviews.llvm.org/D6296
llvm-svn: 222169
As PR20495 demonstrates, Clang currenlty infers the CUDA target (host/device,
etc) for implicit members (constructors, etc.) incorrectly. This causes errors
and even assertions in Clang when compiling code (assertions in C++11 mode where
implicit move constructors are added into the mix).
Fix the problem by inferring the target from the methods the implicit member
should call (depending on its base classes and fields).
llvm-svn: 218624
that function, and apart from being slow, this is unnecessary: ADL can trigger
instantiations that are not permitted here. The standard isn't *completely*
clear here, but this seems like the intent, and in any case this approach is
permitted by [temp.inst]p7.
llvm-svn: 218330
global pool in the course of method selection for
a messaging expression, select one with the most general
return type of 'id'. This is to remove type-mismatch
warning (which is useless) as result of random selection of
method with more restrictive return type. rdar://18095772
llvm-svn: 216560
Changes diagnostic options, language standard options, diagnostic identifiers, diagnostic wording to use c++14 instead of c++1y. It also modifies related test cases to use the updated diagnostic wording.
llvm-svn: 215982
MSVC doesn't decide what the inheritance model for a returned member
pointer *until* a call expression returns it.
This fixes PR20017.
llvm-svn: 215164
Summary:
If during constructing a standard conversion sequence, we resolve an
overload, we need to adjust the from type in the SCS according to the
resolved operator.
I found this bug when debugging PR20218. This doesn't seem to be
observable, so there is no good way of testing it.
Reviewers: rsmith
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D4402
llvm-svn: 213680
array prvalue), treat that as a direct binding. Only the class prvalue case
needs to be excluded here; the rest are extensions anyway, so we can treat them
as we would in C++11.
llvm-svn: 212978
a function pointer is neither better nor worse than binding a function lvalue
to a function rvalue reference. Don't get confused and think that both bindings
are binding to a function lvalue (which would make the lvalue form win); the
const reference is binding to an rvalue.
The "real" bug in PR20218 is still present: we're getting the wrong answer from
template argument deduction, and that's what leads us to this weird overload
set.
llvm-svn: 212916