module, provide a module import stack similar to what we would get for
an include stack, e.g.,
In module 'DependsOnModule' imported from build-fail-notes.m:4:
In module 'Module' imported from DependsOnModule.framework/Headers/DependsOnModule.h:1:
Inputs/Module.framework/Headers/Module.h:15:12: note: previous definition is here
@interface Module
<rdar://problem/12696425>
llvm-svn: 169042
constructor/assignment operator with a const-qualified parameter type. The
prior method for determining this incorrectly used overload resolution.
llvm-svn: 168775
allocated using the allocator associated with an ASTContext.
Use this inside CXXRecordDecl::DefinitionData instead of an UnresolvedSet to
avoid a potential memory leak.
rdar://12761275
llvm-svn: 168771
the related comma pasting extension.
In certain cases, we used to get two diagnostics for what is essentially one
extension. This change suppresses the first diagnostic in certain cases
where we know we're going to print the second diagnostic. The
diagnostic is redundant, and it can't be suppressed in the definition
of the macro because it points at the use of the macro, so we want to
avoid printing it if possible.
The implementation works by detecting constructs which look like comma
pasting at the time of the definition of the macro; this information
is then used when the macro is used. (We can't actually detect
whether we're using the comma pasting extension until the macro is
actually used, but we can detecting constructs which will be comma
pasting if the varargs argument is elided.)
<rdar://problem/12292192>
llvm-svn: 167907
Spent longer than reasonable looking for a nice way to test this & decided to
give up for now. Open to suggestions/requests. Richard Smith suggested adding
something to ASTMatchers but it wasn't readily apparent how to test this with
that.
llvm-svn: 167507
reference instead of relying on computing it.
In general, if storage is no issue, it is preferable to deserialize info from
the PCH instead of trying to recompute it after the PCH was loaded.
The incentive to change this now was due to r155303 changing how friend template
classes in dependent contexts are handled; such classes can now be chained to
a previous template class but the computed InjectedClassNameType may be different
due to the extra template parameters from the dependent context.
The new handling requires more investigation but, in the meantime, writing out
InjectedClassNameType fixes PCH issue in rdar://12627738.
llvm-svn: 167425
The stat cache became essentially useless ever since we started
validating all file entries in the PCH.
But the motivating reason for removing it now is that it also affected
correctness in this situation:
-You have a header without include guards (using "#pragma once" or #import)
-When creating the PCH:
-The same header is referenced in an #include with different filename cases.
-In the PCH, of course, we record only one file entry for the header file
-But we cache in the PCH file the stat info for both filename cases
-Then the source files are updated and the header file is updated in a way that
its size and modification time are the same but its inode changes
-When using the PCH:
-We validate the headers, we check that header file and we create a file entry with its current inode
-There's another #include with a filename with different case than the previously created file entry
-In order to get its stat info we go through the cached stat info of the PCH and we receive the old inode
-because of the different inodes, we think they are different files so we go ahead and include its contents.
Removing the stat cache will potentially break clients that are attempting to use the stat cache
as a way of avoiding having the actual input files available. If that use case is important, patches are welcome
to bring it back in a way that will actually work correctly (i.e., emit a PCH that is self-contained, coping with
literal strings, line/column computations, etc.).
This fixes rdar://5502805
llvm-svn: 167172
diagnostic states; make sure the ASTReader sets the diagnostic state
properly instead of always recreating it.
Fixes rdar://12581618 & http://llvm.org/PR14181
llvm-svn: 166987
the macros that are #define'd or #undef'd on the command line. This
checking happens much earlier than the current macro-definition
checking and is far cleaner, because it does a direct comparison
rather than a diff of the predefines buffers. Moreover, it allows us
to use the result of this check to skip over PCH files within a
directory that have non-matching -D's or -U's on the command
line. Finally, it improves the diagnostics a bit for mismatches,
fixing <rdar://problem/8612222>.
The old predefines-buffer diff'ing will go away in a subsequent commit.
llvm-svn: 166641
check each of the files within that directory to determine if any of
them is an AST file that matches the language and target options. If
so, the first matching AST file is loaded. This fixes a longstanding
discrepency with GCC's precompiled header implementation.
llvm-svn: 166469
failures they know how to tolerate, e.g., out-of-date input files or
configuration/version mismatches. Suppress the corresponding
diagnostics if the client can handle it.
No clients actually use this functionality, yet.
llvm-svn: 166449
manager block and input-file information in the control block. The
source manager entries now point back into the control block. Input
files are now lazily deserialized (if validation is disabled). Reduces
Cocoa's PCH by the ~70k I added when I introduced the redundancy in
r166251.
llvm-svn: 166429
block, so the input files are validated early on, before we've
committed to loading the AST file. This (accidentally) fixed a but
wherein the main file used to generate the AST file would *not* be
validated by the existing validation logic.
At the moment, this leads to some duplication of filenames between the
source manager block and input-file blocks, as well as validation
logic. This will be handled via an upcoming patch.
llvm-svn: 166251
block, which stores information about how the AST file to generated,
from the AST block, which stores the actual serialized AST. The
information in the control block should be enough to determine whether
the AST file is up-to-date and compatible with the current translation
unit, and reading it should not cause any side effects that aren't
easy to undo. That way, we can back out from an attempt to read an
incompatible or out-of-date AST file.
Note that there is still more factoring to do. In particular,
information about the source files used to generate the AST file
(along with their time stamps, sizes, etc.) still resides in the
source manager block.
llvm-svn: 166166
has ivars that require destruction, but none that require anything
except zero-initialization. This is common in ARC and (when true
throughout a class hierarchy) permits the elimination of an
unnecessary message-send during allocation.
llvm-svn: 166088
description. Previously, one could emulate this behavior by placing
the header in an always-unavailable submodule, but Argyrios guilted me
into expressing this idea properly.
llvm-svn: 165921
The ASTUnit needs to initialize an ASTWriter at the beginning of
parsing to fully handle serialization of a translation unit that
imports modules. Do this by introducing an option to enable it, which
corresponds to CXTranslationUnit_ForSerialization on the C API side.
llvm-svn: 165717
macro history.
When deserializing macro history, we arrange history such that the
macros that have definitions (that haven't been #undef'd) and are
visible come at the beginning of the list, which is what the
preprocessor and other clients of Preprocessor::getMacroInfo()
expect. If additional macro definitions become visible later, they'll
be moved toward the front of the list. Note that it's possible to have
ambiguities, but we don't diagnose them yet.
There is a partially-implemented design decision here that, if a
particular identifier has been defined or #undef'd within the
translation unit, that definition (or #undef) hides any macro
definitions that come from imported modules. There's still a little
work to do to ensure that the right #undef'ing happens.
Additionally, we'll need to scope the update records for #undefs, so
they only kick in when the submodule containing that update record
becomes visible.
llvm-svn: 165682
This more accurately reflects its use: this flag is set when a method
matches the getter or setter name for a property in the same class,
and does not actually specify whether or not the definition of the method
will be synthesized (either implicitly or explicitly with @synthesize).
This renames the setter and backing field as well, and changes the
(soon-to-be-obsolete?) XML dump format to use 'property_accessor'
instead of 'synthesized'.
llvm-svn: 165626
MacroInfo*. Instead of simply dumping an offset into the current file,
give each macro definition a proper ID with all of the standard
modules-remapping facilities. Additionally, when a macro is modified
in a subsequent AST file (e.g., #undef'ing a macro loaded from another
module or from a precompiled header), provide a macro update record
rather than rewriting the entire macro definition. This gives us
greater consistency with the way we handle declarations, and ties
together macro definitions much more cleanly.
Note that we're still not actually deserializing macro history (we
never were), but it's far easy to do properly now.
llvm-svn: 165560
whether that function/method already has a body (loaded from some
other AST file), as introduced in r165137. Delay this check until
after the redeclaration chains have been wired up.
While I'm here, make the loading of method bodies lazy.
llvm-svn: 165513
write out the macro history for that macro. Similarly, we need to cope
with reading a macro definition that has been #undef'd.
Take advantage of this new ability so that global code-completion
results can refer to #undef'd macros, rather than losing them
entirely. For multiply defined/#undef'd macros, we will still get the
wrong result, but it's better than getting no result.
llvm-svn: 165502
ImportDecl's module ID was not written out and the reader accepted as module ID
the serialized:
Record.push_back(!IdentifierLocs.empty());
llvm-svn: 165087
This is especially relevant for templatedDecls that might be injected (and thus have their DeclContext set to) somewhere completely different.
llvm-svn: 165005
Check whether a pending instantiation needs to be instantiated (or whether an instantiation already exists).
Verify the size of the PendingInstantiations record (was only checking size of existing PendingInstantiations).
Migrate Obj-C++ part of redecl-merge into separate test, now that this is growing.
templates.mm: test that CodeGen has seen exactly one definition of template instantiations.
redecl-merge.m: use "@" specifier for expected-diagnostics.
llvm-svn: 164993
Clang will now honor the FP_CONTRACT pragma and emit LLVM
fmuladd intrinsics for expressions of the form A * B + C (when they occur in a
single statement).
llvm-svn: 164989
Lookup can nevertheless find them due to the serialized lookup table.
For instance when reading a template decl's templatedDecl, it will search for existing decls that it could be a redeclaration of, and find the half-read template decl.
Thus there is no point in asserting the names of decls.
llvm-svn: 164932
enough information so we can mangle them correctly in cases involving
dependent parameter types. (This specifically impacts cases involving
null pointers and cases involving parameters of reference type.)
Fix the mangler to use this information instead of trying to scavenge
it out of the parameter declaration.
<rdar://problem/12296776>.
llvm-svn: 164656
Summary: Passes all tests (+ the new one with code completion), but needs a thorough review in part related to modules.
Reviewers: doug.gregor
Reviewed By: alexfh
CC: cfe-commits, rsmith
Differential Revision: http://llvm-reviews.chandlerc.com/D41
llvm-svn: 164610
external visible decls, call DeclContext::setMustBuildLookupTable so that the
"lazy decls" bit of the LookupPtr is set.
Previously, in non-C++, if there were no new declarations causing the "lazy decls" bit
to be set, then DeclContext::lookups_begin() would fail to return the decls from the PCH.
Fixes rdar://12316296.
llvm-svn: 164351
clang has recently started to warn about the enum compares:
lib/Serialization/ASTWriter.cpp:2760:31: warning: comparison of literal 256 with expression of type
'clang::DeclarationName::NameKind' is always true [-Wtautological-constant-out-of-range-compare]
llvm-svn: 164220
definition info; it needs to be there because the mangler needs to
access it before we're finished defining the lambda class.
PR12808.
llvm-svn: 164186
unexpanded parameter pack is a pack expansion. Thus, as with a non-type template
parameter which is a pack expansion, it needs to be expanded early into a fixed
list of template parameters.
Since the expanded list of template parameters is not itself a parameter pack,
it is permitted to appear before the end of the template parameter list, so also
remove that restriction (for both template template parameter pack expansions and
non-type template parameter pack expansions).
llvm-svn: 163369
(__builtin_* etc.) so that it isn't possible to take their address.
Specifically, introduce a new type to represent a reference to a builtin
function, and a new cast kind to convert it to a function pointer in the
operand of a call. Fixes PR13195.
llvm-svn: 162962
Summary:
Summary: Keep history of macro definitions and #undefs with corresponding source locations, so that we can later find out all macros active in a specified source location. We don't save the history in PCH (no need currently). Memory overhead is about sizeof(void*)*3*<number of macro definitions and #undefs>+<in-memory size of all #undef'd macros>
I've run a test on a file composed of 109 .h files from boost 1.49 on x86-64 linux.
Stats before this patch:
*** Preprocessor Stats:
73222 directives found:
19171 #define.
4345 #undef.
#include/#include_next/#import:
5233 source files entered.
27 max include stack depth
19210 #if/#ifndef/#ifdef.
2384 #else/#elif.
6891 #endif.
408 #pragma.
14466 #if/#ifndef#ifdef regions skipped
80023/451669/1270 obj/fn/builtin macros expanded, 85724 on the fast path.
127145 token paste (##) operations performed, 11008 on the fast path.
Preprocessor Memory: 5874615B total
BumpPtr: 4399104
Macro Expanded Tokens: 417768
Predefines Buffer: 8135
Macros: 1048576
#pragma push_macro Info: 0
Poison Reasons: 1024
Comment Handlers: 8
Stats with this patch:
...
Preprocessor Memory: 7541687B total
BumpPtr: 6066176
Macro Expanded Tokens: 417768
Predefines Buffer: 8135
Macros: 1048576
#pragma push_macro Info: 0
Poison Reasons: 1024
Comment Handlers: 8
In my test increase in memory usage is about 1.7Mb, which is ~28% of initial preprocessor's memory usage and about 0.8% of clang's total VMM allocation.
As for CPU overhead, it should only be noticeable when iterating over all macros, and should mostly consist of couple extra dereferences and one comparison per macro + skipping of #undef'd macros. It's less trivial to measure, though, as the preprocessor consumes a very small fraction of compilation time.
Reviewers: doug.gregor, klimek, rsmith, djasper
Reviewed By: doug.gregor
CC: cfe-commits, chandlerc
Differential Revision: http://llvm-reviews.chandlerc.com/D28
llvm-svn: 162810
a defaulted special member function until the exception specification is needed
(using the same criteria used for the delayed instantiation of exception
specifications for function temploids).
EST_Delayed is now EST_Unevaluated (using 1330's terminology), and, like
EST_Uninstantiated, carries a pointer to the FunctionDecl which will be used to
resolve the exception specification.
This is enabled for all C++ modes: it's a little faster in the case where the
exception specification isn't used, allows our C++11-in-C++98 extensions to
work, and is still correct for C++98, since in that mode the computation of the
exception specification can't fail.
The diagnostics here aren't great (in particular, we should include implicit
evaluation of exception specifications for defaulted special members in the
template instantiation backtraces), but they're not much worse than before.
Our approach to the problem of cycles between in-class initializers and the
exception specification for a defaulted default constructor is modified a
little by this change -- we now reject any odr-use of a defaulted default
constructor if that constructor uses an in-class initializer and the use is in
an in-class initialzer which is declared lexically earlier. This is a closer
approximation to the current draft solution in core issue 1351, but isn't an
exact match (but the current draft wording isn't reasonable, so that's to be
expected).
llvm-svn: 160847
as "volatile", meaning there's a high enough chance that they may
change while we are trying to use them.
This flag is only enabled by libclang.
Currently "volatile" source files will be stat'ed immediately
before opening them, because the file size stat info
may not be accurate since when we got it (e.g. from the PCH).
This avoids crashes when trying to reference mmap'ed memory
from a file whose size is not what we expect.
Note that there's still a window for a racing issue to occur
but the window for it should be way smaller than before.
We can consider later on to avoid mmap completely on such files.
rdar://11612916
llvm-svn: 160074
currently we take address of std::vector's contents only after we finished
adding all comments (so no reallocation can happen), this will change in
future.
llvm-svn: 159845
very simple semantic analysis that just builds the AST; minor changes for lexer
to pick up source locations I didn't think about before.
Comments AST is modelled along the ideas of HTML AST: block and inline content.
* Block content is a paragraph or a command that has a paragraph as an argument
or verbatim command.
* Inline content is placed within some block. Inline content includes plain
text, inline commands and HTML as tag soup.
llvm-svn: 159790
coming from an AST file are registered for serialization.
A static data member instantiation of in a chained PCH could be missed
when serializing decls; the result was that when emitting the visible decls
map of its DeclContext, we would use a DeclID that was not actually emitted,
leading to crashes or hangs.
Fix this by making sure such decls are always registered for serialization.
Also introduce extra sanity checks to make sure we don't register new
declarations or types after we have serialized the types/decls block.
rdar://11728990
llvm-svn: 159550
For some targets a structure named __va_list_tag is built to help define
the __builtin_va_list type. However, __va_list_tag was not being treated as a
predefined type thus causing problems when serializing the AST. This commit
fixes that oversight by adding the necessary support to treat __va_list_tag
as a predefined type.
llvm-svn: 159508
express library-level dependencies within Clang.
This is no more verbose really, and plays nicer with the rest of the
CMake facilities. It should also have no change in functionality.
llvm-svn: 158888
../tools/clang/lib/Serialization/ASTReader.cpp:6316:9: warning: default label in switch which covers all enumeration values [-Wcovered-switch-default]
Also fix the indentation here to match the coding conventions.
llvm-svn: 158794
target Objective-C runtime down to the frontend: break this
down into a single target runtime kind and version, and compute
all the relevant information from that. This makes it
relatively painless to add support for new runtimes to the
compiler. Make the new -cc1 flag, -fobjc-runtime=blah-x.y.z,
available at the driver level as a better and more general
alternative to -fgnu-runtime and -fnext-runtime. This new
concept of an Objective-C runtime also encompasses what we
were previously separating out as the "Objective-C ABI", so
fragile vs. non-fragile runtimes are now really modelled as
different kinds of runtime, paving the way for better overall
differentiation.
As a sort of special case, continue to accept the -cc1 flag
-fobjc-runtime-has-weak, as a sop to PLCompatibilityWeak.
I won't go so far as to say "no functionality change", even
ignoring the new driver flag, but subtle changes in driver
semantics are almost certainly not intended.
llvm-svn: 158793
Also add a couple of unit tests to check the invalid-PCH error messages
to satisfy PR4568 and for the assertion (introduced in r149918 and fixed
in r158769) that would cause clang to crash when given an empty PCH.
llvm-svn: 158772
* Retain comments in the AST
* Serialize/deserialize comments
* Find comments attached to a certain Decl
* Expose raw comment text and SourceRange via libclang
llvm-svn: 158771
method definition that has its '{' attached to the method name without
a space.
With a method like:
-(id)meth{
.....
}
the logic in ObjCMethodDecl that determined the selector locations got
confused because it was initialized based on an end location for '{' but
that end location changed to '}' after the method was finished.
Fix this by having an immutable end location for the declarator and
for getLocEnd() get the end location from the body itself.
Fixes rdar://11659739.
llvm-svn: 158583
We need an efficient mechanism to determine whether a defaulted default
constructor is constexpr, in order to determine whether a class is a literal
type, so keep the incrementally-built form on CXXRecordDecl. Remove the
on-demand computation of same, so that we only have one method for determining
whether a default constructor is constexpr. This doesn't affect correctness,
since default constructor lookup is much simpler than selecting a constructor
for copying or moving.
We don't need a corresponding mechanism for defaulted copy or move constructors,
since they can't affect whether a type is a literal type. Conversely, checking
whether such functions are constexpr can require non-trivial effort, so we defer
such checks until the copy or move constructor is required.
Thus we now only compute whether a copy or move constructor is constexpr on
demand, and only compute whether a default constructor is constexpr in advance.
This is unfortunate, but seems like the best solution.
llvm-svn: 158290
The integral APSInt value is now stored in a decomposed form and the backing
store for large values is allocated via the ASTContext. This way its not
leaked as TemplateArguments are never destructed when they are allocated in
the ASTContext. Since the integral data is immutable it is now shared between
instances, making copying TemplateArguments a trivial operation.
Currently getting the integral data out of a TemplateArgument requires creating
a new APSInt object. This is cheap when the value is small but can be expensive
if it's not. If this turns out to be an issue a more efficient accessor could
be added.
llvm-svn: 158150
In addition, I've made the pointer and reference typedef 'void' rather than T*
just so they can't get misused. I would've omitted them entirely but
std::distance likes them to be there even if it doesn't use them.
This rolls back r155808 and r155869.
Review by Doug Gregor incorporating feedback from Chandler Carruth.
llvm-svn: 158104
in ObjCMethodDecl to indicate whether the method does not override any other method,
which is the majority of cases.
That way we can avoid unnecessary work doing lookups, especially when PCH is involved.
rdar://11360082
llvm-svn: 156476
in-class initializer for one of its fields. Value-initialization of such
a type should use the in-class initializer!
The former was just a bug, the latter is a (reported) standard defect.
llvm-svn: 156274
of templates by using the newly introduce FoldingSetVector. This
preserves insertion order for all iteration of specializations.
I've also included a somewhat terrifying testcase that rapidly builds up
a large number of functions. This is enough that any system with ASLR
will have non-deterministic debug information generated for the test
case without the fix here as the debug information is generated in part
by walking these specializations.
llvm-svn: 156133
validate that we didn't override the contents of any of such files.
If this is detected, emit a diagnostic error and recover gracefully
by using the contents of the original file that the PCH was built from.
Part of rdar://11305263
llvm-svn: 156107
calculating it recursively.
boost::assign::tuple_list_of uses the trick of chaining call operator expressions in order to declare a "list of tuples", e.g:
std::vector<tuple> v = boost::assign::tuple_list_of(1, "foo")(2, "bar")(3, "qqq");
Due to CXXOperatorCallExpr calculating its source range recursively we would get
significant slowdowns with a large number of chained call operator expressions and the
potential for stack overflow.
rdar://11350116
llvm-svn: 155848
filter_decl_iterator had a weird mismatch where both op* and op-> returned T*
making it difficult to generalize this filtering behavior into a reusable
library of any kind.
This change errs on the side of value, making op-> return T* and op* return
T&.
(reviewed by Richard Smith)
llvm-svn: 155808
the declaration context as not having external visible storage any more.
This should improve performance as we won't needlessly reload the visible decls multiple times
and seems to fix the i386 crash in rdar://11327522.
llvm-svn: 155649