-Wsometimes-uninitialized diagnostics to make it clearer that the cause
of the issue may be a condition which must always evaluate to true or
false, rather than an uninitialized variable.
To emphasize this, add a new note with a fixit which removes the
impossible condition or replaces it with a constant.
Also, downgrade the diagnostic from -Wsometimes-uninitialized to
-Wconditional-uninitialized when it applies to a range-based for loop,
since the condition is not written explicitly in the code in that case.
llvm-svn: 157511
Make 'help arch' return the list of supported architectures.
Add a convenience method StringList::Join(const char *separator) which is called from the help function for 'arch'.
Also add a simple test case.
llvm-svn: 157507
are passed in. However, those arguments may be in a write-protected area, as far
as the runtime library is concerned. For instance, the data could be placed into
a 'linkedit' section, which isn't writable. Emit the code from
llvm_gcda_increment_indirect_counter directly into the function instead.
Note: The code for this is ugly, and can lead to bloat. We should look into
simplifying this code instead of having all of these branches.
<rdar://problem/11181370>
llvm-svn: 157505
to pass around a struct instead of a large set of individual values. This
cleans up the interface and allows more information to be added to the struct
for future targets without requiring changes to each and every target.
NV_CONTRIB
llvm-svn: 157479
When the flag is set to zero, we do not check for errors in malloc_usable_size.
This may be useful to work around a bug in Nvidia drivers prior to 295.*
llvm-svn: 157472
with arbitrary topologies (previously it would give up when hitting a diamond
in the use graph for example). The testcase from PR12764 is now reduced from
a pile of additions to the optimal 1617*%x0+208. In doing this I changed the
previous strategy of dropping all uses for expression leaves to one of dropping
all but one use. This works out more neatly (but required a bunch of tweaks)
and is also safer: some recently fixed bugs during recursive linearization were
because the linearization code thinks it completely owns a node if it has no uses
outside the expression it is linearizing. But if the node was also in another
expression that had been linearized (and thus all uses of the node from that
expression dropped) then the conclusion that it is completely owned by the
expression currently being linearized is wrong. Keeping one use from within each
linearized expression avoids this kind of mistake.
llvm-svn: 157467
-Wsometimes-uninitialized. This detects cases where an explicitly-written branch
inevitably leads to an uninitialized variable use (so either the branch is dead
code or there is an uninitialized use bug).
This chunk of warnings tentatively lives within -Wuninitialized, in order to
give it more visibility to existing Clang users.
llvm-svn: 157458