This will likely introduce catastrophic performance regressions on
older subtargets, but should be correct. A follow up change will
remove the old fp32-denormals subtarget features, and switch to using
the new denormal-fp-math/denormal-fp-math-f32 attributes. Frontends
should be making sure to add the denormal-fp-math-f32 attribute when
appropriate to avoid performance regressions.
We could choose a free 0 for this, but this
matches the behavior for fmul undef, 1.0. Also,
the NaN use is more useful for folding use operations
although if it's not eliminated it is more expensive
in terms of code size.
llvm-svn: 338376
If denorms are not flushed we can use max instead of multiplication
by 1. For double that is simply faster, while for float and half
it is shorter, because mul uses constant bus and VOP3.
Differential Revision: https://reviews.llvm.org/D36856
llvm-svn: 312095
Currently the default C calling convention functions are treated
the same as compute kernels. Make this explicit so the default
calling convention can be changed to a non-kernel.
Converted with perl -pi -e 's/define void/define amdgpu_kernel void/'
on the relevant test directories (and undoing in one place that actually
wanted a non-kernel).
llvm-svn: 298444
Now that unaligned access expansion should not attempt
to produce i64 accesses, we can remove the hack in
PreprocessISelDAG where this is done.
This allows splitting i64 private accesses while
allowing the new add nodes indexing the vector components
can be folded with the base pointer arithmetic.
llvm-svn: 268293