The functionality that calculateCatchReturnSuccessorColors provides was
once non-trivial: it was a computation layered on top of funclet
coloring.
These days, LLVM IR directly encodes what
calculateCatchReturnSuccessorColors computed, obsoleting the need for
it.
No functionality change is intended.
llvm-svn: 256965
In an inbounds getelementptr, when an index produces a constant non-negative
offset to add to the base, the add can be assumed to not have unsigned overflow.
This relies on the assumption that addresses can't occupy more than half the
address space, which isn't possible in C because it wouldn't be possible to
represent the difference between the start of the object and one-past-the-end
in a ptrdiff_t.
Setting the NoUnsignedWrap flag is theoretically useful in general, and is
specifically useful to the WebAssembly backend, since it permits stronger
constant offset folding.
Differential Revision: http://reviews.llvm.org/D15544
llvm-svn: 256890
Summary:
This commit renames GCRelocateOperands to GCRelocateInst and makes it an
intrinsic wrapper, similar to e.g. MemCpyInst. Also, all users of
GCRelocateOperands were changed to use the new intrinsic wrapper instead.
Reviewers: sanjoy, reames
Subscribers: reames, sanjoy, llvm-commits
Differential Revision: http://reviews.llvm.org/D15762
llvm-svn: 256811
We need a frame pointer if there is a push/pop sequence after the
prologue in order to unwind the stack. Scanning the instructions to
figure out if this happened made hasFP not constant-time which is a
violation of expectations. Let's compute this up-front and reuse that
computation when we need it.
llvm-svn: 256730
Pulled out the similar CONCAT_VECTORS creation code from the 2/3 operand getNode() calls (to handle all UNDEF and all BUILD_VECTOR cases). Added a similar handler to the general getNode() call as well.
llvm-svn: 256709
This adds support for the MCU psABI in a way different from r251223 and r251224,
basically reverting most of these two patches. The problem with the approach
taken in r251223/4 is that it only handled libcalls that originated from the backend.
However, the mid-end also inserts quite a few libcalls and assumes these use the
platform's default calling convention.
The previous patch tried to insert inregs when necessary both in the FE and,
somewhat hackily, in the CG. Instead, we now define a new default calling convention
for the MCU, which doesn't use inreg marking at all, similarly to what x86-64 does.
Differential Revision: http://reviews.llvm.org/D15054
llvm-svn: 256494
Teach the statepoint lowering code to emit Indirect stackmap entries for spill inserted by StatepointLowering (i.e. SelectionDAG), but Direct stackmap entries for in-IR allocas which represent manual stack slots. This is what the docs call for (http://llvm.org/docs/StackMaps.html#stack-map-format), but we've been emitting both as Direct. This was pointed out recently on the mailing list as a bug. It also blocks http://reviews.llvm.org/D15632 which extends the lowering to handle vector-of-pointers since only Indirect references can encode a variable sized slot.
To implement this, I introduced a new flag on the StackObject class used to maintian information about stack slots. I original considered (and prototyped in http://reviews.llvm.org/D15632), the idea of using the existing isSpillSlot flag, but end up deciding that was a bit too risky and that the cost of adding a new flag was low. Having the new flag will also allow us - in the future - to emit better comments in verbose assembly which indicate where a particular stack spill around a call comes from. (deopt, gc, regalloc).
Differential Revision: http://reviews.llvm.org/D15759
llvm-svn: 256352
Reasons:
1) The existing form was a form of false generality. None of the implemented GCStrategies use anything other than a type. Its becoming more and more clear we're going to need some type of strong GC pointer in the type system and we shouldn't pretend otherwise at this point.
2) The API was awkward when applied to vectors-of-pointers. The old one could have been made to work, but calling isGCManagedPointer(Ty->getScalarType()) is much cleaner than the Value alternatives.
3) The rewriting implementation effectively assumes the type based predicate as well. We should be consistent.
llvm-svn: 256312
Summary:
These were deprecated 11 months ago when a generic
llvm.experimental.gc.result intrinsic, which works for all types, was added.
Reviewers: sanjoy, reames
Subscribers: sanjoy, chenli, llvm-commits
Differential Revision: http://reviews.llvm.org/D15719
llvm-svn: 256262
Summary:
First up is instcombine, where in the dbg.declare -> dbg.value conversion,
the llvm.dbg.value needs to be called on the actual loaded value, rather
than the address (since the whole point of this transformation is to be
able to get rid of the alloca). Further, now that that's cleaned up, we
can remove a hack in the backend, that would add an implicit OP_deref if
the argument to dbg.value was an alloca. This stems from before the
existence of DIExpression and is no longer necessary since the deref can
be expressed explicitly.
Now, in order to make sure that the tests pass with this change, we need to
correct the printing of DEBUG_VALUE comments to take into account the
expression, which wasn't taken into account before.
Unfortunately, for both these changes, there were a number of incorrect
test cases (mostly the wrong number of DW_OP_derefs, but also a couple
where the test itself was broken more badly). aprantl and I have gone
through and adjusted these test case in order to make them pass with
these fixes and in some cases to make sure they're actually testing
what they are meant to test.
Reviewers: aprantl
Subscribers: dsanders
Differential Revision: http://reviews.llvm.org/D14186
llvm-svn: 256077
Update supportSplitCSR's interface to take machine function instead of the
calling convention.
Review comments for http://reviews.llvm.org/D15341
llvm-svn: 255818
Summary: This patch adds a check in visitLandingPad to see if landingpad's result type is token type. If so, do not create DAG nodes for its exception pointer and selector value. This patch enables the back end to handle landingpads of token type.
Reviewers: JosephTremoulet, majnemer, rnk
Subscribers: sanjoy, llvm-commits
Differential Revision: http://reviews.llvm.org/D15405
llvm-svn: 255749
It appears that neither compiler-rt nor the gnu soft-float libraries actually
implement these conversions. Instead of emitting calls to library functions
that don't exist, handle it similarly to the way we handle i8 -> float and
i16 -> float conversions: call the i32 library function, and adjust the type.
Differential Revision: http://reviews.llvm.org/D15151
llvm-svn: 255643
Full type legalizer that works with all vectors length - from 2 to 16, (i32, i64, float, double).
This intrinsic, for example
void @llvm.masked.scatter.v2f32(<2 x float>%data , <2 x float*>%ptrs , i32 align , <2 x i1>%mask )
requires type widening for data and type promotion for mask.
Differential Revision: http://reviews.llvm.org/D13633
llvm-svn: 255629
Part 1 was submitted in http://reviews.llvm.org/D15134.
Changes in this part:
* X86RegisterInfo.td, X86RecognizableInstr.cpp: Add FR128 register class.
* X86CallingConv.td: Pass f128 values in XMM registers or on stack.
* X86InstrCompiler.td, X86InstrInfo.td, X86InstrSSE.td:
Add instruction selection patterns for f128.
* X86ISelLowering.cpp:
When target has MMX registers, configure MVT::f128 in FR128RegClass,
with TypeSoftenFloat action, and custom actions for some opcodes.
Add missed cases of MVT::f128 in places that handle f32, f64, or vector types.
Add TODO comment to support f128 type in inline assembly code.
* SelectionDAGBuilder.cpp:
Fix infinite loop when f128 type can have
VT == TLI.getTypeToTransformTo(Ctx, VT).
* Add unit tests for x86-64 fp128 type.
Differential Revision: http://reviews.llvm.org/D11438
llvm-svn: 255558
It turns out that terminatepad gives little benefit over a cleanuppad
which calls the termination function. This is not sufficient to
implement fully generic filters but MSVC doesn't support them which
makes terminatepad a little over-designed.
Depends on D15478.
Differential Revision: http://reviews.llvm.org/D15479
llvm-svn: 255522
When FastISel fails to translate an instruction it hands off code
generation to SelectionDAG. Before it does so, it may have generated
local value instructions to feed phi nodes in successor blocks. These
instructions will then be generated again by SelectionDAG, causing
duplication and less efficient code, including extra spill
instructions.
Patch by Wolfgang Pieb!
Differential Revision: http://reviews.llvm.org/D11768
llvm-svn: 255520
This patch adds some missing calls to MBB::normalizeSuccProbs() in several
locations where it should be called. Those places are found by checking if the
sum of successors' probabilities is approximate one in MachineBlockPlacement
pass with some instrumented code (not in this patch).
Differential revision: http://reviews.llvm.org/D15259
llvm-svn: 255455
Summary:
Previously SelectionDAGBuilder asserted that the pointer operands of
memcpy / memset / memmove intrinsics are in address space < 256. This assert
implicitly assumed the X86 backend, where all address spaces < 256 are
equivalent to address space 0 from the code generator's point of view. On some
targets (R600 and NVPTX) several address spaces < 256 have a target-defined
meaning, so this assert made little sense for these targets.
This patch removes this wrong assertion and adds extra checks before lowering
these intrinsics to library calls. If a pointer operand can't be casted to
address space 0 without changing semantics, a fatal error is reported to the
user.
The new behavior should be valid for all targets that give address spaces != 0
a target-specified meaning (NVPTX, R600, X86). NVPTX lowers big or
variable-sized memory intrinsics before SelectionDAG construction. All other
memory intrinsics are inlined (the threshold is set very high for this target).
R600 doesn't support memcpy / memset / memmove library calls (previously the
illegal emission of a call to such library function triggered an error
somewhere in the code generator). X86 now emits inline loads and stores for
address spaces 256 and 257 up to the same threshold that is used for address
space 0 and reports a fatal error otherwise.
I call this a "partial fix" because there are still cases that can't be
lowered. A fatal error is reported in these cases.
Reviewers: arsenm, theraven, compnerd, hfinkel
Subscribers: hfinkel, llvm-commits, alex
Differential Revision: http://reviews.llvm.org/D7241
llvm-svn: 255441
While we have successfully implemented a funclet-oriented EH scheme on
top of LLVM IR, our scheme has some notable deficiencies:
- catchendpad and cleanupendpad are necessary in the current design
but they are difficult to explain to others, even to seasoned LLVM
experts.
- catchendpad and cleanupendpad are optimization barriers. They cannot
be split and force all potentially throwing call-sites to be invokes.
This has a noticable effect on the quality of our code generation.
- catchpad, while similar in some aspects to invoke, is fairly awkward.
It is unsplittable, starts a funclet, and has control flow to other
funclets.
- The nesting relationship between funclets is currently a property of
control flow edges. Because of this, we are forced to carefully
analyze the flow graph to see if there might potentially exist illegal
nesting among funclets. While we have logic to clone funclets when
they are illegally nested, it would be nicer if we had a
representation which forbade them upfront.
Let's clean this up a bit by doing the following:
- Instead, make catchpad more like cleanuppad and landingpad: no control
flow, just a bunch of simple operands; catchpad would be splittable.
- Introduce catchswitch, a control flow instruction designed to model
the constraints of funclet oriented EH.
- Make funclet scoping explicit by having funclet instructions consume
the token produced by the funclet which contains them.
- Remove catchendpad and cleanupendpad. Their presence can be inferred
implicitly using coloring information.
N.B. The state numbering code for the CLR has been updated but the
veracity of it's output cannot be spoken for. An expert should take a
look to make sure the results are reasonable.
Reviewers: rnk, JosephTremoulet, andrew.w.kaylor
Differential Revision: http://reviews.llvm.org/D15139
llvm-svn: 255422
After much discussion, ending here:
http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151123/315620.html
it has been decided that, instead of having the vectorizer directly generate
special absdiff and horizontal-add intrinsics, we'll recognize the relevant
reduction patterns during CodeGen. Accordingly, these intrinsics are not needed
(the operations they represent can be pattern matched, as is already done in
some backends). Thus, we're backing these out in favor of the current
development work.
r248483 - Codegen: Fix llvm.*absdiff semantic.
r242546 - [ARM] Use [SU]ABSDIFF nodes instead of intrinsics for VABD/VABA
r242545 - [AArch64] Use [SU]ABSDIFF nodes instead of intrinsics for ABD/ABA
r242409 - [Codegen] Add intrinsics 'absdiff' and corresponding SDNodes for absolute difference operation
llvm-svn: 255387
The access function has a short entry and a short exit, the initialization
block is only run the first time. To improve the performance, we want to
have a short frame at the entry and exit.
We explicitly handle most of the CSRs via copies. Only the CSRs that are not
handled via copies will be in CSR_SaveList.
Frame lowering and prologue/epilogue insertion will generate a short frame
in the entry and exit according to CSR_SaveList. The majority of the CSRs will
be handled by register allcoator. Register allocator will try to spill and
reload them in the initialization block.
We add CSRsViaCopy, it will be explicitly handled during lowering.
1> we first set FunctionLoweringInfo->SplitCSR if conditions are met (the target
supports it for the given calling convention and the function has only return
exits). We also call TLI->initializeSplitCSR to perform initialization.
2> we call TLI->insertCopiesSplitCSR to insert copies from CSRsViaCopy to
virtual registers at beginning of the entry block and copies from virtual
registers to CSRsViaCopy at beginning of the exit blocks.
3> we also need to make sure the explicit copies will not be eliminated.
rdar://problem/23557469
Differential Revision: http://reviews.llvm.org/D15340
llvm-svn: 255353
PR25763 demonstrated an issue with D14683 - vector comparison constant folding only works for i1 results, so we need to split off the sign-extension of the result to the required type. Luckily this can be done with the existing type legalization code.
llvm-svn: 255289
During selection DAG legalization, extractelement is replaced with a load
instruction. To do this, a temporary store to the stack is used unless an
existing store is found that can be re-used.
If re-using a store, the chain going out of the store must be replaced by
the one going out of the new load (this ensures that any stores that must
take place after the store happens after the load, else the value might
be overwritten before it is loaded).
The problem is, if the extractelement index is dependent on the store
replacing the chain will introduce a cycle in the selection DAG (the load
uses the index, and by replacing the chain we will make the index dependent
on the load).
To fix this, if the index is dependent on the store, the store is skipped.
This is conservative as we may end up creating an unnecessary extra store
to the stack. However, the situation is not expected to occur very often.
Differential Revision: http://reviews.llvm.org/D15330
llvm-svn: 255114
Patterns were missing for KNL target for <8 x i32>, <8 x float> masked load/store.
This intrinsic comes with all legal types:
<8 x float> @llvm.masked.load.v8f32(<8 x float>* %addr, i32 align, <8 x i1> %mask, <8 x float> %passThru),
but still requires lowering, because VMASKMOVPS, VMASKMOVDQU32 work with 512-bit vectors only.
All data operands should be widened to 512-bit vector.
The mask operand should be widened to v16i1 with zeroes.
Differential Revision: http://reviews.llvm.org/D15265
llvm-svn: 254909
This is a revised version of r254655 which uses a Printable wrapper
class to avoid ambiguous overload problems.
Differential Revision: http://reviews.llvm.org/D14348
llvm-svn: 254681
Almost all these changes are conditioned and only apply to the new
x86-64 f128 type configuration, which will be enabled in a follow up
patch. They are required together to make new f128 work. If there is
any error, we should fix or revert them as a whole.
These changes should have no impact to current configurations.
* Relax type legalization checks to accept new f128 type configuration,
whose TypeAction is TypeSoftenFloat, not TypeLegal, but also has
TLI.isTypeLegal true.
* Relax GetSoftenedFloat to return in some cases f128 type SDValue,
which is TLI.isTypeLegal but not "softened" to i128 node.
* Allow customized FABS, FNEG, FCOPYSIGN on new f128 type configuration,
to generate optimized bitwise operators for libm functions.
* Enhance related Lower* functions to handle f128 type.
* Enhance DAGTypeLegalizer::run, SoftenFloatResult, and related functions
to keep new f128 type in register, and convert f128 operators to library calls.
* Fix Combiner, Emitter, Legalizer routines that did not handle f128 type.
* Add ExpandConstant to handle i128 constants, ExpandNode
to handle ISD::Constant node.
* Add one more parameter to getCommonSubClass and firstCommonClass,
to guarantee that returned common sub class will contain the specified
simple value type.
This extra parameter is used by EmitCopyFromReg in InstrEmitter.cpp.
* Fix infinite loop in getTypeLegalizationCost when f128 is the value type.
* Fix printOperand to handle null operand.
* Enhance ISD::BITCAST node to handle f128 constant.
* Expand new f128 type for BR_CC, SELECT_CC, SELECT, SETCC nodes.
* Enhance X86AsmPrinter to emit f128 values in comments.
Differential Revision: http://reviews.llvm.org/D15134
llvm-svn: 254653
vector.resize() is significantly slower than memset in many STLs
and the cost of initializing these vectors is significant on targets
with many registers. Since we don't need the overhead of a vector,
use a simple unique_ptr instead.
llvm-svn: 254526
Cost calculation for vector GEP failed with due to invalid cast to GEP index operand.
The bug is fixed, added a test.
http://reviews.llvm.org/D14976
llvm-svn: 254408
The @llvm.get.dynamic.area.offset.* intrinsic family is used to get the offset
from native stack pointer to the address of the most recent dynamic alloca on
the caller's stack. These intrinsics are intendend for use in combination with
@llvm.stacksave and @llvm.restore to get a pointer to the most recent dynamic
alloca. This is useful, for example, for AddressSanitizer's stack unpoisoning
routines.
Patch by Max Ostapenko.
Differential Revision: http://reviews.llvm.org/D14983
llvm-svn: 254404
SDAG currently can emit debug location for function parameters when
an llvm.dbg.declare points to either a function argument SSA temp,
or to an AllocaInst. This change extends this logic by adding a
fallback case when neither of the above is true.
This is required for SafeStack, which may copy the contents of a
byval function argument into something that is not an alloca, and
then describe the target as the new location of the said argument.
llvm-svn: 254352
This patch implements dynamic realignment of stack objects for targets
with a non-realigned stack pointer. Behaviour in FunctionLoweringInfo
is changed so that for a target that has StackRealignable set to
false, over-aligned static allocas are considered to be variable-sized
objects and are handled with DYNAMIC_STACKALLOC nodes.
It would be good to group aligned allocas into a single big alloca as
an optimization, but this is yet todo.
SystemZ benefits from this, due to its stack frame layout.
New tests SystemZ/alloca-03.ll for aligned allocas, and
SystemZ/alloca-04.ll for "no-realign-stack" attribute on functions.
Review and help from Ulrich Weigand and Hal Finkel.
llvm-svn: 254227
Summary:
Many target lowerings copy-paste the code to test SDValues for known constants.
This code can instead be shared in SelectionDAG.cpp, and reused in the targets.
Reviewers: MatzeB, andreadb, tstellarAMD
Subscribers: arsenm, jyknight, llvm-commits
Differential Revision: http://reviews.llvm.org/D14945
llvm-svn: 254085
to a simple type when lowering a truncating store of a vector type. In this
case for an EVT we'll return Expand as we should in all of the cases anyhow.
The testcase triggered at the one in VectorLegalizer::LegalizeOp, inspection
found the rest.
llvm-svn: 254061
The patch in http://reviews.llvm.org/D13745 is broken into four parts:
1. New interfaces without functional changes.
2. Use new interfaces in SelectionDAG, while in other passes treat probabilities
as weights.
3. Use new interfaces in all other passes.
4. Remove old interfaces.
This the second patch above. In this patch SelectionDAG starts to use
probability-based interfaces in MBB to add successors but other MC passes are
still using weight-based interfaces. Therefore, we need to maintain correct
weight list in MBB even when probability-based interfaces are used. This is
done by updating weight list in probability-based interfaces by treating the
numerator of probabilities as weights. This change affects many test cases
that check successor weight values. I will update those test cases once this
patch looks good to you.
Differential revision: http://reviews.llvm.org/D14361
llvm-svn: 253965
When MergeConsecutiveStores() combines two loads and two stores into
wider loads and stores, the chain users of both of the original loads
must be transfered to the new load, because it may be that a chain
user only depends on one of the loads.
New test case: test/CodeGen/SystemZ/dag-combine-01.ll
Reviewed by James Y Knight.
Bugzilla: https://llvm.org/bugs/show_bug.cgi?id=25310#c6
llvm-svn: 253779
Note, this was reviewed (and more details are in) http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html
These intrinsics currently have an explicit alignment argument which is
required to be a constant integer. It represents the alignment of the
source and dest, and so must be the minimum of those.
This change allows source and dest to each have their own alignments
by using the alignment attribute on their arguments. The alignment
argument itself is removed.
There are a few places in the code for which the code needs to be
checked by an expert as to whether using only src/dest alignment is
safe. For those places, they currently take the minimum of src/dest
alignments which matches the current behaviour.
For example, code which used to read:
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dest, i8* %src, i32 500, i32 8, i1 false)
will now read:
call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 8 %dest, i8* align 8 %src, i32 500, i1 false)
For out of tree owners, I was able to strip alignment from calls using sed by replacing:
(call.*llvm\.memset.*)i32\ [0-9]*\,\ i1 false\)
with:
$1i1 false)
and similarly for memmove and memcpy.
I then added back in alignment to test cases which needed it.
A similar commit will be made to clang which actually has many differences in alignment as now
IRBuilder can generate different source/dest alignments on calls.
In IRBuilder itself, a new argument was added. Instead of calling:
CreateMemCpy(Dst, Src, getInt64(Size), DstAlign, /* isVolatile */ false)
you now call
CreateMemCpy(Dst, Src, getInt64(Size), DstAlign, SrcAlign, /* isVolatile */ false)
There is a temporary class (IntegerAlignment) which takes the source alignment and rejects
implicit conversion from bool. This is to prevent isVolatile here from passing its default
parameter to the source alignment.
Note, changes in future can now be made to codegen. I didn't change anything here, but this
change should enable better memcpy code sequences.
Reviewed by Hal Finkel.
llvm-svn: 253511
This patch adds support for vector constant folding of integer/float comparisons.
This requires FoldConstantVectorArithmetic to support scalar constant operands (in this case ISD::CONDCASE). In future we should be able to support other scalar constant types as necessary (and possibly start calling FoldConstantVectorArithmetic for all node creations)
Differential Revision: http://reviews.llvm.org/D14683
llvm-svn: 253504
This change introduces an instrumentation intrinsic instruction for
value profiling purposes, the lowering of the instrumentation intrinsic
and raw reader updates. The raw profile data files for llvm-profdata
testing are updated.
llvm-svn: 253484
The virtual register containing the address for returned value on
stack should in the DAG be represented with a CopyFromReg node and not
a Register node. Otherwise, InstrEmitter will not make sure that it
ends up in the right register class for the target instruction.
SystemZ needs this, becuause the reg class for address registers is a
subset of the general 64 bit register class.
test/SystemZ/CodeGen/args-07.ll and args-04.ll updated to run with
-verify-machineinstrs.
Reviewed by Hal Finkel.
llvm-svn: 253461
Summary:
Now that there is a one-to-one mapping from MachineFunction to
WinEHFuncInfo, we don't need to use a DenseMap to select the right
WinEHFuncInfo for the current funclet.
The main challenge here is that X86WinEHStatePass is an IR pass that
doesn't have access to the MachineFunction. I gave it its own
WinEHFuncInfo object that it uses to calculate state numbers, which it
then throws away. As long as nobody creates or removes EH pads between
this pass and SDAG construction, we will get the same state numbers.
The other thing X86WinEHStatePass does is to mark the EH registration
node. Instead of communicating which alloca was the registration through
WinEHFuncInfo, I added the llvm.x86.seh.ehregnode intrinsic. This
intrinsic generates no code and simply marks the alloca in use.
Reviewers: JCTremoulet
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D14668
llvm-svn: 253378
Statepoint lowering currently expects that the target method of a
statepoint only defines a single value. This precludes using
statepoints with ABIs that return values in multiple registers
(e.g. the SysV AMD64 ABI). This change adds support for lowering
statepoints with mutli-def targets.
llvm-svn: 253339
Richard Trieu noted that UBSan detected an overflowing shift, and the obvious fix caused a crash.
What was happening was that the shiftee (1U) was indeed too small for the possible range of shifts it had to handle, but also we were using "VT.getSizeInBits()" to get the maximum type bitwidth, but we wanted "VT.getScalarSizeInBits()" to get the vector lane size instead of the entire vector size.
Use an APInt for the shift and VT.getScalarSizeInBits().
llvm-svn: 253023
This reverts commit r252565.
This also includes the revert of the commit mentioned below in order to
avoid breaking tests in AMDGPU:
Revert "AMDGPU: Set isAllocatable = 0 on VS_32/VS_64"
This reverts commit r252674.
llvm-svn: 252956
Several backends have instructions to reverse the order of bits in an integer. Conceptually matching such patterns is similar to @llvm.bswap, and it was mentioned in http://reviews.llvm.org/D14234 that it would be best if these patterns were matched in InstCombine instead of reimplemented in every different target.
This patch introduces an intrinsic @llvm.bitreverse.i* that operates similarly to @llvm.bswap. For plumbing purposes there is also a new ISD node ISD::BITREVERSE, with simple expansion and promotion support.
The intention is that InstCombine's BSWAP detection logic will be extended to support BITREVERSE too, and @llvm.bitreverse intrinsics emitted (if the backend supports lowering it efficiently).
llvm-svn: 252878
- Factor out code to query and modify the sign bit of a floatingpoint
value as an integer. This also works if none of the targets integer
types is big enough to hold all bits of the floatingpoint value.
- Legalize FABS(x) as FCOPYSIGN(x, 0.0) if FCOPYSIGN is available,
otherwise perform bit manipulation on the sign bit. The previous code
used "x >u 0 ? x : -x" which is incorrect for x being -0.0! It also
takes 34 instructions on ARM Cortex-M4. With this patch we only
require 5:
vldr d0, LCPI0_0
vmov r2, r3, d0
lsrs r2, r3, #31
bfi r1, r2, #31, #1
bx lr
(This could be further improved if the compiler would recognize that
r2, r3 is zero).
- Only lower FCOPYSIGN(x, y) = sign(x) ? -FABS(x) : FABS(x) if FABS is
available otherwise perform bit manipulation on the sign bit.
- Perform the sign(x) test by masking out the sign bit and comparing
with 0 rather than shifting the sign bit to the highest position and
testing for "<s 0". For x86 copysignl (on 80bit values) this gets us:
testl $32768, %eax
rather than:
shlq $48, %rax
sets %al
testb %al, %al
Differential Revision: http://reviews.llvm.org/D11172
llvm-svn: 252839
Summary:
Don't fold
(zext (and (load x), cst)) -> (and (zextload x), (zext cst))
if
(and (load x) cst)
will match as a zextload already and has additional users.
For example, the following IR:
%load = load i32, i32* %ptr, align 8
%load16 = and i32 %load, 65535
%load64 = zext i32 %load16 to i64
store i32 %load16, i32* %dst1, align 4
store i64 %load64, i64* %dst2, align 8
used to produce the following aarch64 code:
ldr w8, [x0]
and w9, w8, #0xffff
and x8, x8, #0xffff
str w9, [x1]
str x8, [x2]
but with this change produces the following aarch64 code:
ldrh w8, [x0]
str w8, [x1]
str x8, [x2]
Reviewers: resistor, mcrosier
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D14340
llvm-svn: 252789
This allows avoiding the default Expand behavior which
introduces stack usage. Bitcast the scalar and replace
the missing elements with undef.
This is covered by existing tests and used by a future
commit which makes 64-bit vectors legal types on AMDGPU.
llvm-svn: 252632
This is for AMDGPU to implement v2i64 extract as extract of
half of a v4i32.
This is covered by existing tests and used by a future
commit which makes 64-bit vectors legal types on AMDGPU.
llvm-svn: 252630
I'm not sure what the point of this was. I'm not sure why
you would ever define an instruction that produces an unallocatable
register class. No tests fail with this removed, and it seems like
it should be a verifier error to define such an instruction.
This was problematic for AMDGPU because it would make bad decisions
by arbitrarily changing the register class when unsetting isAllocatable
for VS_32/VS_64, which is currently set as a workaround to this problem.
AMDGPU uses the VS_32/VS_64 register classes to represent operands which
can use either VGPRs or SGPRs. When isAllocatable is unset for these,
this would need to pick either the SGPR or VGPR class and insert either
a copy we don't want, or an illegal copy we would need to deal with
later. A semi-arbitrary register class ordering decision is made in tablegen,
which resulted in always picking a VGPR class because it happens to have
more registers than the SGPR register class. We really just want to
use whatever register class the original register had.
llvm-svn: 252565
We don't currently have any runtime library functions for operations on
f16 values (other than conversions to and from f32 and f64), so we
should always promote it to f32, even if that is not a legal type. In
that case, the f32 values would be softened to f32 library calls.
SoftenFloatRes_FP_EXTEND now needs to check the promoted operand's type,
as it may ne a no-op or require a different library call.
getCopyFromParts and getCopyToParts now need to cope with a
floating-point value stored in a larger integer part, as is the case for
any target that needs to store an f16 value in a 32-bit integer
register.
Differential Revision: http://reviews.llvm.org/D12856
llvm-svn: 252459
Summary:
The CLR's personality routine passes these in rdx/edx, not rax/eax.
Make getExceptionPointerRegister a virtual method parameterized by
personality function to allow making this distinction.
Similarly make getExceptionSelectorRegister a virtual method parameterized
by personality function, for symmetry.
Reviewers: pgavlin, majnemer, rnk
Subscribers: jyknight, dsanders, llvm-commits
Differential Revision: http://reviews.llvm.org/D14344
llvm-svn: 252383
We already had a test for this for 32-bit SEH catchpads, but those don't
actually create funclets. We had a bug that only appeared in funclet
prologues, where we would establish EBP and ESI as our FP and BP, and
then downstream prologue code would overwrite them.
While I was at it, I fixed Win64+funclets+stackrealign. This issue
doesn't come up as often there due to the ABI requring 16 byte stack
alignment, but now we can rest easy that AVX and WinEH will work well
together =P.
llvm-svn: 252210
There is no point in having invoke safepoints handled differently than the
call safepoints. All relevant decisions could be made by looking at whether
or not gc.result and gc.relocate lay in a same basic block. This change will
allow to lower call safepoints with relocates and results in a different
basic blocks. See test case for example.
Differential Revision: http://reviews.llvm.org/D14158
llvm-svn: 252028
1) PR25154. This is basically a repeat of PR18102, which was fixed in
r200201, and broken again by r234430. The latter changed which of the
store nodes was merged into from the first to the last. Thus, we now
also need to prefer merging a later store at a given address into the
target node, instead of an earlier one.
2) While investigating that, I also realized I'd introduced a bug in
r236850. There, I removed a check for alignment -- not realizing that
nothing except the alignment check was ensuring that none of the stores
were overlapping! This is a really bogus way to ensure there's no
aliased stores.
A better solution to both of these issues is likely to always use the
code added in the 'if (UseAA)' branches which rearrange the chain based
on a more principled analysis. I'll look into whether that can be used
always, but in the interest of getting things back to working, I think a
minimal change makes sense.
llvm-svn: 251816
Summary:
Don't call `computeKnownBitsFromRangeMetadata` for extended loads --
this can cause a mismatch between the width of the !range metadata and
the width of the APInt's accumulating `KnownZero` (and `KnownOne` in the
future). This isn't a problem now, but will be after a future change.
Note: this can be made more aggressive in the future.
Reviewers: nlewycky
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D14107
llvm-svn: 251486
r248010 changed the -debug output to use short ids, but did not
similarly modify the graph printer. Change to be consistent, for ease of
cross-reference.
llvm-svn: 251465
This is a usage of the IR-level fast-math-flags now that they are propagated to SDNodes.
This was originally part of D8900.
Removing the global 'enable-unsafe-fp-math' checks will require auto-upgrade and
possibly other changes.
Differential Revision: http://reviews.llvm.org/D9708
llvm-svn: 251450
When optimization is disabled, edge weights that are stored in MBB won't be used so that we don't have to store them. Currently, this is done by adding successors with default weight 0, and if all successors have default weights, the weight list will be empty. But that the weight list is empty doesn't mean disabled optimization (as is stated several times in MachineBasicBlock.cpp): it may also mean all successors just have default weights.
We should discourage using default weights when adding successors, because it is very easy for users to forget update the correct edge weights instead of using default ones (one exception is that the MBB only has one successor). In order to detect such usages, it is better to differentiate using default weights from the case when optimizations is disabled.
In this patch, a new interface addSuccessorWithoutWeight(MBB*) is created for when optimization is disabled. In this case, MBB will try to maintain an empty weight list, but it cannot guarantee this as for many uses of addSuccessor() whether optimization is disabled or not is not checked. But it can guarantee that if optimization is enabled, then the weight list always has the same size of the successor list.
Differential revision: http://reviews.llvm.org/D13963
llvm-svn: 251429
When taking the remainder of a value divided by a constant, visitREM()
attempts to convert the REM to a longer but faster sequence of instructions.
This conversion calls combine() on a speculative DIV instruction. Commit
rL250825 may cause this combine() to return a DIVREM, corrupting nearby nodes.
Flow eventually hits unreachable().
This patch adds a test case and a check to prevent visitREM() from trying
to convert the REM instruction in cases where a DIVREM is possible.
See http://reviews.llvm.org/D14035
llvm-svn: 251373
When using the MCU psABI, compiler-generated library calls should pass
some parameters in-register. However, since inreg marking for x86 is currently
done by the front end, it will not be applied to backend-generated calls.
This is a workaround for PR3997, which describes a similar issue for -mregparm.
Differential Revision: http://reviews.llvm.org/D13977
llvm-svn: 251223
We don't need a mask of a rotation result to be a constant splat - any constant scalar/vector can be usefully folded.
Followup to D13851.
llvm-svn: 251197
This patch adds support for lowering to the XOP VPROT / VPROTI vector bit rotation instructions.
This has required changes to the DAGCombiner rotation pattern matching to support vector types - so far I've only changed it to support splat vectors, but generalising this further is feasible in the future.
Differential Revision: http://reviews.llvm.org/D13851
llvm-svn: 251188
When we fold "mul ((add x, c1), c1)" -> "add ((mul x, c2), c1*c2)", we bail if (add x, c1) has multiple
users which would result in an extra add instruction.
In such cases, this patch adds a check to see if we can eliminate a multiply instruction in exchange for the extra add.
I also added the capability of doing the existing optimization with non-splatted vectors (splatted also works).
Differential Revision: http://reviews.llvm.org/D13740
llvm-svn: 251028
This will be used in future commits for AMDGPU to promote
operations on i64 vectors into operations on 32-bit vector
components.
This will be used / tested in future AMDGPU commits.
llvm-svn: 250945
default: llvm_unreachable("This action is not supported yet!");
-- so I'm adding one to the third switch block, too.
This is a follow-up fix for http://reviews.llvm.org/D13862
llvm-svn: 250830
Summary:
TargetLoweringBase::Expand is defined as "Try to expand this to other ops,
otherwise use a libcall." For ISD::UDIV and ISD::SDIV, the choice between
the two possibilities was defined in a rather convoluted way:
- if DIVREM is legal, expand to DIVREM
- if DIVREM has a custom lowering, expand to DIVREM
- if DIVREM libcall is defined and a remainder from the same division is
computed elsewhere, expand to a DIVREM libcall
- else, expand to a DIV libcall
This had the undesirable effect that if both DIV and DIVREM are implemented
as libcalls, then ISD::UDIV and ISD::SDIV are expanded to the heavier DIVREM
libcall, even when the remainder isn't used.
The new code adds a new LegalizeAction, TargetLoweringBase::LibCall, so that
backends can directly control whether they prefer an expansion or a conversion
to a libcall. This makes the generic lowering code even more generic,
allowing its reuse in a wider range of target-specific configurations.
The useful effect is that ARM backend will now generate a call
to __aeabi_{i,u}div rather than __aeabi_{i,u}divmod in cases where
it doesn't need the remainder. There's no functional change outside
the ARM backend.
Reviewers: t.p.northover, rengolin
Subscribers: t.p.northover, llvm-commits, aemerson
Differential Revision: http://reviews.llvm.org/D13862
llvm-svn: 250826
Summary:
In addition to moving the code over, this patch amends the DIV,REM -> DIVREM
combining to run on all affected nodes at once: if the nodes are converted
to DIVREM one at a time, then the resulting DIVREM may get legalized by the
backend into something target-specific that we won't be able to recognize
and correlate with the remaining nodes.
The motivation is to "prepare terrain" for D13862: when we set DIV and REM
to be legalized to libcalls, instead of the DIVREM, we otherwise lose the
ability to combine them together. To prevent this, we need to take the
DIV,REM -> DIVREM combining out of the lowering stage.
Reviewers: RKSimon, eli.friedman, rengolin
Subscribers: john.brawn, rengolin, llvm-commits
Differential Revision: http://reviews.llvm.org/D13733
llvm-svn: 250825
Summary:
Some shared code for handling eh.exceptionpointer and eh.exceptioncode
needs to not share the part that truncates to 32 bits, which is intended
just for exception codes.
Reviewers: rnk
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D13747
llvm-svn: 250588
Summary:
Caching SDLoc(N), instead of recreating it in every single
function call, keeps the code denser, and allows to unwrap long lines.
Reviewers: sunfish, atrick, sdmitrouk
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D13726
llvm-svn: 250305
Summary: The two implementations had more code in common than not.
Reviewers: sunfish, MatzeB, sdmitrouk
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D13724
llvm-svn: 250302
The comment says this was stopped because it was unlikely to be
profitable. This is not true if you want to combine vector loads
with multiple components.
For a simple case that looks like
t0 = load t0 ...
t1 = load t0 ...
t2 = load t0 ...
t3 = load t0 ...
t4 = store t0:1, t0:1
t5 = store t4, t1:0
t6 = store t5, t2:0
t7 = store t6, t3:0
We want to get all of these stores onto a chain
that is a TokenFactor of these N loads. This mostly
solves the AMDGPU merge-stores.ll regressions
with -combiner-alias-analysis for merging vector
stores of vector loads.
llvm-svn: 250138
This basic combine was surprisingly missing.
AMDGPU legalizes many operations in terms of 32-bit vector components,
so not doing this results in many extra copies and subregister extracts
that need to be cleaned up later.
InstCombine already does this for the hasOneUse case. The target hook
is to fix a handful of tests which break (e.g. ARM/vmov.ll) which turn
from a vector materialize repeated immediate instruction to a constant
vector load with more scalar copies from it.
llvm-svn: 250129
When lowering invoke statement, all unwind destinations are directly added as successors of call site block, and the weight of those new edges are not assigned properly. Actually, default weight 16 are used for those edges. This patch calculates the proper edge weights for those edges when collecting all unwind destinations.
Differential revision: http://reviews.llvm.org/D13354
llvm-svn: 250119
We have a number of functions that implement constant folding of vectors (unary and binary ops) in near identical manners (and the differences don't appear to be critical).
This patch introduces a common implementation (SelectionDAG::FoldConstantVectorArithmetic) and calls this in both the unary and binary op cases.
After this initial patch I intend to begin enabling vector constant folding for a wider number of opcodes in SelectionDAG::getNode().
Differential Revision: http://reviews.llvm.org/D13665
llvm-svn: 250118
This was a minor bug in r249492. Calling PrepareEHLandingPad on a
non-landingpad was a no-op, but it attempted to get the generic pointer
register class, which apparently doesn't exist for some targets.
llvm-svn: 250068
On targets where f32 is not legal, we have to look through a BITCAST SDNode to
find the register that an argument is stored in when emitting debug info, or we
will not be able to emit a DW_AT_location for it.
Differential Revision: http://reviews.llvm.org/D13005
llvm-svn: 250056
The new implementation works at least as well as the old implementation
did.
Also delete the associated preparation tests. They don't exercise
interesting corner cases of the new implementation. All the codegen
tests of the EH tables have already been ported.
llvm-svn: 249918
I'll be using the function in a similar combine for AArch64. The helper was
also improved to handle undef values.
Part of http://reviews.llvm.org/D13442
llvm-svn: 249572
Summary:
Set the pad MBB as a funclet entry for CoreCLR as well as MSVCCXX, and
update state numbering to put the catchpad block rather than its normal
successor into the unwind map.
Reviewers: majnemer
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D13492
llvm-svn: 249569
Our current emission strategy is to emit the funclet prologue in the
CatchPad's normal destination. This is problematic because
intra-funclet control flow to the normal destination is not erroneous
and results in us reevaluating the prologue if said control flow is
taken.
Instead, use the CatchPad's location for the funclet prologue. This
correctly models our desire to have unwind edges evaluate the prologue
but edges to the normal destination result in typical control flow.
Differential Revision: http://reviews.llvm.org/D13424
llvm-svn: 249483
Summary:
Assign one state number per handler/funclet, tracking parent state,
handler type, and catch type token.
State numbers are arranged such that ancestors have lower state numbers
than their descendants.
Reviewers: majnemer, andrew.w.kaylor, rnk
Subscribers: pgavlin, AndyAyers, llvm-commits
Differential Revision: http://reviews.llvm.org/D13450
llvm-svn: 249457
Summary:
- Add CoreCLR to if/else ladders and switches as appropriate.
- Rename isMSVCEHPersonality to isFuncletEHPersonality to better
reflect what it captures.
Reviewers: majnemer, andrew.w.kaylor, rnk
Subscribers: pgavlin, AndyAyers, llvm-commits
Differential Revision: http://reviews.llvm.org/D13449
llvm-svn: 249455
visitSIGN_EXTEND_INREG calls SelectionDAG::getNode to constant fold scalar constants but handles vector constants itself, despite getNode being capable of dealing with them.
This required a minor change to the getNode implementation to actually deal with cases where the scalars of a BUILD_VECTOR were wider integers than the vector type - which was the only extra ability of the visitSIGN_EXTEND_INREG implementation.
No codegen intended and all existing tests remain the same.
llvm-svn: 249236
Catchret transfers control from a catch funclet to an earlier funclet.
However, it is not completely clear which funclet the catchret target is
part of. Make this clear by stapling the catchret target's funclet
membership onto the CATCHRET SDAG node.
llvm-svn: 249052
The Win64 unwinder disassembles forwards from each PC to try to
determine if this PC is in an epilogue. If so, it skips calling the EH
personality function for that frame. Typically, this means you cannot
catch an exception in the same frame that you threw it, because 'throw'
calls a noreturn runtime function.
Previously we avoided this problem with the TrapUnreachable
TargetOption, but that's a much bigger hammer than we need. All we need
is a 1 byte non-epilogue instruction right after the call. Instead,
what we got was an unconditional branch to a shared block containing the
ud2, potentially 7 bytes instead of 1. So, this reverts r206684, which
added TrapUnreachable, and replaces it with something better.
The new code pattern matches for invoke/call followed by unreachable and
inserts an int3 into the DAG. To be 100% watertight, we would need to
insert SEH_Epilogue instructions into all basic blocks ending in a call
with no terminators or successors, but in practice this is unlikely to
come up.
llvm-svn: 248959
Summary:
Funclets have been turned into functions by the time they hit the object
file. Make sure that they have decent names for the symbol table and
CFI directives explaining how to reason about their prologues.
Differential Revision: http://reviews.llvm.org/D13261
llvm-svn: 248824
When AA is being used, non-aliasing stores are canonicalized to use the same
chain, and DAGCombiner::getStoreMergeAndAliasCandidates can take advantage of
this by looking only as users of a store's chain operand. However, user
iteration is not result-number specific, we need to check that the use is as a
chain operand, and not via some other operand. It is certainly possible to have
another potentially-aliasing store, which shares the first's base pointer, and
uses the first's chain's node via some other operand.
Failure to catch this situation caused, at least in the included test case, an
assert later because the relative sequence-number ordering caused later
replacement to create a cycle in the DAG.
llvm-svn: 248698
This is a redo of D7208 ( r227242 - http://llvm.org/viewvc/llvm-project?view=revision&revision=227242 ).
The patch was reverted because an AArch64 target could infinite loop after the change in DAGCombiner
to merge vector stores. That happened because AArch64's allowsMisalignedMemoryAccesses() wasn't telling
the truth. It reported all unaligned memory accesses as fast, but then split some 128-bit unaligned
accesses up in performSTORECombine() because they are slow.
This patch attempts to fix the problem in AArch's allowsMisalignedMemoryAccesses() while preserving
existing (perhaps questionable) lowering behavior.
The x86 test shows that store merging is working as intended for a target with fast 32-byte unaligned
stores.
Differential Revision: http://reviews.llvm.org/D12635
llvm-svn: 248622
Fixes the overflow case of llvm.*absdiff intrinsic also updats the tests and LangRef.rst accordingly.
Differential Revision: http://reviews.llvm.org/D11678
llvm-svn: 248483
If the stores are storing values from loads which partially
alias the stores, we could end up placing the merged loads
and stores on the same chain which has the potential to break.
Each store may have a different chain dependency on only some
of the original loads. Create a new TokenFactor to capture all
of the required dependencies of the stores rather than assuming
all stores can use the same chain.
The testcase is a situation where this happens, although
it does not have an observable change from this. The DAG nodes
just happened to not be reordered before despite this missing
chain dependency.
This is based on an off-list report for an out of tree target
which regressed due to r246307 and I haven't managed to find a case
where the nodes do end up reordered with an in tree target.
llvm-svn: 248468
Fixed the issue that when there is an edge from the jump table to the default statement, we should check it directly instead of checking if the sibling of the jump table header is a successor of the jump table header, which may not be the default statment but a successor of it.
llvm-svn: 248354
This patch adds support for combining patterns such as (FMUL(FADD(1.0, x), y)) and (FMUL(FSUB(x, 1.0), y)) to their FMA equivalents.
This is useful in particular for linear interpolation cases such as (FADD(FMUL(x, t), FMUL(y, FSUB(1.0, t))))
Differential Revision: http://reviews.llvm.org/D13003
llvm-svn: 248210
Because mod is always exact, this function should have never taken a rounding mode argument. The actual implementation still has issues, which I'll look at resolving in a subsequent patch.
llvm-svn: 248195
If storing multiple FP constants, some subset of the stores
would be replaced with integers due to visit order, so
MergeConsecutiveStores would only partially merge
these.
llvm-svn: 248169
They mostly clutter the output while it is still possible to see which
node has multiple users without them.
Differential Revision: http://reviews.llvm.org/D12569
llvm-svn: 248013
Clang now passes the adjectives as an argument to catchpad.
Getting the CatchObj working is simply a matter of threading another
static alloca through codegen, first as an alloca, then as a frame
index, and finally as a frame offset.
llvm-svn: 247844
After D10403, we had FMF in the DAG but disabled by default. Nick reported no crashing errors after some stress testing,
so I enabled them at r243687. However, Escha soon notified us of a bug not covered by any in-tree regression tests:
if we don't propagate the flags, we may fail to CSE DAG nodes because differing FMF causes them to not match. There is
one test case in this patch to prove that point.
This patch hopes to fix or leave a 'TODO' for all of the in-tree places where we create nodes that are FMF-capable. I
did this by putting an assert in SelectionDAG.getNode() to find any FMF-capable node that was being created without FMF
( D11807 ). I then ran all regression tests and test-suite and confirmed that everything passes.
This patch exposes remaining work to get DAG FMF to be fully functional: (1) add the flags to non-binary nodes such as
FCMP, FMA and FNEG; (2) add the flags to intrinsics; (3) use the flags as conditions for transforms rather than the
current global settings.
Differential Revision: http://reviews.llvm.org/D12095
llvm-svn: 247815
warning on them having always_inline attribute for reasons I don't fully
understand -- static functions are just as inlinable as inline
functions in terms of linkage.
llvm-svn: 247334
Summary:
The BUILD_VECTOR node will truncate its operators to match the
type. We need to take this into account when constant folding -
we need to perform a truncation before constant folding the elements.
This is because the upper bits can change the result, depending on
the operation type (for example this is the case for min/max).
This change also adds a regression test.
Reviewers: jmolloy
Subscribers: jmolloy, llvm-commits
Differential Revision: http://reviews.llvm.org/D12697
llvm-svn: 247265
All of the complexity is in cleanupret, and it mostly follows the same
codepaths as catchret, except it doesn't take a return value in RAX.
This small example now compiles and executes successfully on win32:
extern "C" int printf(const char *, ...) noexcept;
struct Dtor {
~Dtor() { printf("~Dtor\n"); }
};
void has_cleanup() {
Dtor o;
throw 42;
}
int main() {
try {
has_cleanup();
} catch (int) {
printf("caught it\n");
}
}
Don't try to put the cleanup in the same function as the catch, or Bad
Things will happen.
llvm-svn: 247219
The 32-bit tables don't actually contain PC range data, so emitting them
is incredibly simple.
The 64-bit tables, on the other hand, use the same table for state
numbering as well as label ranges. This makes things more difficult, so
it will be implemented later.
llvm-svn: 247192
with the new pass manager, and no longer relying on analysis groups.
This builds essentially a ground-up new AA infrastructure stack for
LLVM. The core ideas are the same that are used throughout the new pass
manager: type erased polymorphism and direct composition. The design is
as follows:
- FunctionAAResults is a type-erasing alias analysis results aggregation
interface to walk a single query across a range of results from
different alias analyses. Currently this is function-specific as we
always assume that aliasing queries are *within* a function.
- AAResultBase is a CRTP utility providing stub implementations of
various parts of the alias analysis result concept, notably in several
cases in terms of other more general parts of the interface. This can
be used to implement only a narrow part of the interface rather than
the entire interface. This isn't really ideal, this logic should be
hoisted into FunctionAAResults as currently it will cause
a significant amount of redundant work, but it faithfully models the
behavior of the prior infrastructure.
- All the alias analysis passes are ported to be wrapper passes for the
legacy PM and new-style analysis passes for the new PM with a shared
result object. In some cases (most notably CFL), this is an extremely
naive approach that we should revisit when we can specialize for the
new pass manager.
- BasicAA has been restructured to reflect that it is much more
fundamentally a function analysis because it uses dominator trees and
loop info that need to be constructed for each function.
All of the references to getting alias analysis results have been
updated to use the new aggregation interface. All the preservation and
other pass management code has been updated accordingly.
The way the FunctionAAResultsWrapperPass works is to detect the
available alias analyses when run, and add them to the results object.
This means that we should be able to continue to respect when various
passes are added to the pipeline, for example adding CFL or adding TBAA
passes should just cause their results to be available and to get folded
into this. The exception to this rule is BasicAA which really needs to
be a function pass due to using dominator trees and loop info. As
a consequence, the FunctionAAResultsWrapperPass directly depends on
BasicAA and always includes it in the aggregation.
This has significant implications for preserving analyses. Generally,
most passes shouldn't bother preserving FunctionAAResultsWrapperPass
because rebuilding the results just updates the set of known AA passes.
The exception to this rule are LoopPass instances which need to preserve
all the function analyses that the loop pass manager will end up
needing. This means preserving both BasicAAWrapperPass and the
aggregating FunctionAAResultsWrapperPass.
Now, when preserving an alias analysis, you do so by directly preserving
that analysis. This is only necessary for non-immutable-pass-provided
alias analyses though, and there are only three of interest: BasicAA,
GlobalsAA (formerly GlobalsModRef), and SCEVAA. Usually BasicAA is
preserved when needed because it (like DominatorTree and LoopInfo) is
marked as a CFG-only pass. I've expanded GlobalsAA into the preserved
set everywhere we previously were preserving all of AliasAnalysis, and
I've added SCEVAA in the intersection of that with where we preserve
SCEV itself.
One significant challenge to all of this is that the CGSCC passes were
actually using the alias analysis implementations by taking advantage of
a pretty amazing set of loop holes in the old pass manager's analysis
management code which allowed analysis groups to slide through in many
cases. Moving away from analysis groups makes this problem much more
obvious. To fix it, I've leveraged the flexibility the design of the new
PM components provides to just directly construct the relevant alias
analyses for the relevant functions in the IPO passes that need them.
This is a bit hacky, but should go away with the new pass manager, and
is already in many ways cleaner than the prior state.
Another significant challenge is that various facilities of the old
alias analysis infrastructure just don't fit any more. The most
significant of these is the alias analysis 'counter' pass. That pass
relied on the ability to snoop on AA queries at different points in the
analysis group chain. Instead, I'm planning to build printing
functionality directly into the aggregation layer. I've not included
that in this patch merely to keep it smaller.
Note that all of this needs a nearly complete rewrite of the AA
documentation. I'm planning to do that, but I'd like to make sure the
new design settles, and to flesh out a bit more of what it looks like in
the new pass manager first.
Differential Revision: http://reviews.llvm.org/D12080
llvm-svn: 247167
Summary:
One of the vector splitting paths for extract_vector_elt tries to lower:
define i1 @via_stack_bug(i8 signext %idx) {
%1 = extractelement <2 x i1> <i1 false, i1 true>, i8 %idx
ret i1 %1
}
to:
define i1 @via_stack_bug(i8 signext %idx) {
%base = alloca <2 x i1>
store <2 x i1> <i1 false, i1 true>, <2 x i1>* %base
%2 = getelementptr <2 x i1>, <2 x i1>* %base, i32 %idx
%3 = load i1, i1* %2
ret i1 %3
}
However, the elements of <2 x i1> are not byte-addressible. The result of this
is that the getelementptr expands to '%base + %idx * (1 / 8)' which simplifies
to '%base + %idx * 0', and then simply '%base' causing all values of %idx to
extract element zero.
This commit fixes this by promoting the vector elements of <8-bits to i8 before
splitting the vector.
This fixes a number of test failures in pocl.
Reviewers: pekka.jaaskelainen
Subscribers: pekka.jaaskelainen, llvm-commits
Differential Revision: http://reviews.llvm.org/D12591
llvm-svn: 247128
Currently this hits an assert that extload should
always be supported, which assumes integer extloads.
This moves a hack out of SI's argument lowering and
is covered by existing tests.
llvm-svn: 247113
Typically these are catchpads, which hold data used to decide whether to
catch the exception or continue unwinding. We also shouldn't create MBBs
for catchendpads, cleanupendpads, or terminatepads, since no real code
can live in them.
This fixes a problem where MI passes (like the register allocator) would
try to put code into catchpad blocks, which are not executed by the
runtime. In the new world, blocks ending in invokes now have many
possible successors.
llvm-svn: 247102
Summary:
32-bit funclets have short prologues that allocate enough stack for the
largest call in the whole function. The runtime saves CSRs for the
funclet. It doesn't restore CSRs after we finally transfer control back
to the parent funciton via a CATCHRET, but that's a separate issue.
32-bit funclets also have to adjust the incoming EBP value, which is
what llvm.x86.seh.recoverframe does in the old model.
64-bit funclets need to spill CSRs as normal. For simplicity, this just
spills the same set of CSRs as the parent function, rather than trying
to compute different CSR sets for the parent function and each funclet.
64-bit funclets also allocate enough stack space for the largest
outgoing call frame, like 32-bit.
Reviewers: majnemer
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D12546
llvm-svn: 247092
In searching for a fix for the underlying code-quality bug highlighted by
r246937 (that SDAG simplification can lead to us generating an ISD::OR node
with a constant zero LHS), I ran across this:
We generically canonicalize commutative binary-operation nodes in SDAG getNode
so that, if only one operand is a constant, it will be on the RHS. However, we
were doing this only after a bunch of constant-based simplification checks that
all assume this canonical form (that any constant will be on the RHS). Moving
the operand-swapping canonicalization prior to these checks seems like the
right thing to do (and, as it turns out, causes SDAG to completely fold away the
computation in test/CodeGen/ARM/2012-11-14-subs_carry.ll, just like InstCombine
would do).
llvm-svn: 246938
Use and check the 'IsFast' optional parameter to TLI.allowsMemoryAccess() any time
we have a merged access candidate. Without this patch, we were generating unaligned
16-byte (SSE) memops for x86 targets where those accesses are slow.
This change was mentioned in:
http://reviews.llvm.org/D10662 and
http://reviews.llvm.org/D10905
and will help solve PR21711.
Differential Revision: http://reviews.llvm.org/D12573
llvm-svn: 246771
Summary:
Add a `cleanupendpad` instruction, used to mark exceptional exits out of
cleanups (for languages/targets that can abort a cleanup with another
exception). The `cleanupendpad` instruction is similar to the `catchendpad`
instruction in that it is an EH pad which is the target of unwind edges in
the handler and which itself has an unwind edge to the next EH action.
The `cleanupendpad` instruction, similar to `cleanupret` has a `cleanuppad`
argument indicating which cleanup it exits. The unwind successors of a
`cleanuppad`'s `cleanupendpad`s must agree with each other and with its
`cleanupret`s.
Update WinEHPrepare (and docs/tests) to accomodate `cleanupendpad`.
Reviewers: rnk, andrew.w.kaylor, majnemer
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D12433
llvm-svn: 246751
This patch uses the metadata defined in D12341 to avoid creating an unpredictable branch.
Differential Revision: http://reviews.llvm.org/D12343
llvm-svn: 246691
Vector 'getelementptr' with scalar base is an opportunity for gather/scatter intrinsic to generate a better sequence.
While looking for uniform base, we want to use the scalar base pointer of GEP, if exists.
Differential Revision: http://reviews.llvm.org/D11121
llvm-svn: 246622
Currently, when edge weights are assigned to edges that are created when lowering switch statement, the weight on the edge to default statement (let's call it "default weight" here) is not considered. We need to distribute this weight properly. However, without value profiling, we have no idea how to distribute it. In this patch, I applied the heuristic that this weight is evenly distributed to successors.
For example, given a switch statement with cases 1,2,3,5,10,11,20, and every edge from switch to each successor has weight 10. If there is a binary search tree built to test if n < 10, then its two out-edges will have weight 4x10+10/2 = 45 and 3x10 + 10/2 = 35 respectively (currently they are 40 and 30 without considering the default weight). Each distribution (which is 5 here) will be stored in each SwitchWorkListItem for further distribution.
There are some exceptions:
For a jump table header which doesn't have any edge to default statement, we don't distribute the default weight to it.
For a bit test header which covers a contiguous range and hence has no edges to default statement, we don't distribute the default weight to it.
When the branch checks a single value or a contiguous range with no edge to default statement, we don't distribute the default weight to it.
In other cases, the default weight is evenly distributed to successors.
Differential Revision: http://reviews.llvm.org/D12418
llvm-svn: 246522
SETCC is one of those special node types for which operation actions (legality,
etc.) is keyed off of an operand type, not the node's value type. This makes
sense because the value type of a legal SETCC node is determined by its
operands' value type (via the TLI function getSetCCResultType). When the
SDAGBuilder creates SETCC nodes, it either creates them with an MVT::i1 value
type, or directly with the value type provided by TLI.getSetCCResultType.
The first problem being fixed here is that DAGCombine had several places
querying TLI.isOperationLegal on SETCC, but providing the return of
getSetCCResultType, instead of the operand type directly. This does not mean
what the author thought, and "luckily", most in-tree targets have SETCC with
Custom lowering, instead of marking them Legal, so these checks return false
anyway.
The second problem being fixed here is that two of the DAGCombines could create
SETCC nodes with arbitrary (integer) value types; specifically, those that
would simplify:
(setcc a, b, op1) and|or (setcc a, b, op2) -> setcc a, b, op3
(which is possible for some combinations of (op1, op2))
If the operands of the and|or node are actual setcc nodes, then this is not an
issue (because the and|or must share the same type), but, the relevant code in
DAGCombiner::visitANDLike and DAGCombiner::visitORLike actually calls
DAGCombiner::isSetCCEquivalent on each operand, and that function will
recognise setcc-like select_cc nodes with other return types. And, thus, when
creating new SETCC nodes, we need to be careful to respect the value-type
constraint. This is even true before type legalization, because it is quite
possible for the SELECT_CC node to have a legal type that does not happen to
match the corresponding TLI.getSetCCResultType type.
To be explicit, there is nothing that later fixes the value types of SETCC
nodes (if the type is legal, but does not happen to match
TLI.getSetCCResultType). Creating SETCCs with an MVT::i1 value type seems to
work only because, either MVT::i1 is not legal, or it is what
TLI.getSetCCResultType returns if it is legal. Fixing that is a larger change,
however. For the time being, restrict the relevant transformations to produce
only SETCC nodes with a value type matching TLI.getSetCCResultType (or MVT::i1
prior to type legalization).
Fixes PR24636.
llvm-svn: 246507
This was part of D7208 (r227242), but that commit was reverted because it exposed
a bug in AArch64 lowering. I should have that fixed and the rest of the commit
reinstated soon.
llvm-svn: 246493
DAGCombine has a utility wrapper around TLI's getSetCCResultType; use it in the
one place in DAGCombine still directly calling the TLI function. NFC.
llvm-svn: 246482
Also delete and simplify a lot of MachineModuleInfo code that used to be
needed to handle personalities on landingpads. Now that the personality
is on the LLVM Function, we no longer need to track it this way on MMI.
Certainly it should not live on LandingPadInfo.
llvm-svn: 246478
This code was dead when it was committed in r23665 (Oct 7, 2005), and before it
reaches its 10th anniversary, it really should go. We can always bring it back
if we'd like, but it forms more SETCC nodes, and the way we do legality
checking on SETCC nodes is wrong in a number of places, and removing this means
fewer places to fix. NFC.
llvm-svn: 246466
This reverts commit r246371, as it cause a rather obscure bug in AArch64
test-suite paq8p (time outs, seg-faults). I'll investigate it before
reapplying.
llvm-svn: 246379
Value *getSplatValue(Value *Val);
It complements the CreateVectorSplat(), which creates 2 instructions - insertelement and shuffle with all-zero mask.
The new function recognizes the pattern - insertelement+shuffle and returns the splat value (or nullptr).
It also returns a splat value form ConstantDataVector, for completeness.
Differential Revision: http://reviews.llvm.org/D11124
llvm-svn: 246371
When combiner AA is enabled, look at stores on the same chain.
Non-aliasing stores are moved to the same chain so the existing
code fails because it expects to find an adajcent store on a consecutive
chain.
Because of how DAGCombiner tries these store combines,
MergeConsecutiveStores doesn't see the correct set of stores on the chain
when it visits the other stores. Each store individually has its chain
fixed before trying to merge consecutive stores, and then tries to merge
stores from that point before the other stores have been processed to
have their chains fixed. To fix this, attempt to use FindBetterChain
on any possibly neighboring stores in visitSTORE.
Suppose you have 4 32-bit stores that should be merged into 1 vector
store. One store would be visited first, fixing the chain. What happens is
because not all of the store chains have yet been fixed, 2 of the stores
are merged. The other 2 stores later have their chains fixed,
but because the other stores were already merged, they have different
memory types and merging the two different sized stores is not
supported and would be more difficult to handle.
llvm-svn: 246307
For targets that didn't support this, this will let us respect the
langref instead of failing to select.
Note that we don't need to change the 32-bit x86/PPC lowerings (to
account for the result type/# difference) because they're both
custom and bypass type legalization.
llvm-svn: 246258
We can now run 32-bit programs with empty catch bodies. The next step
is to change PEI so that we get funclet prologues and epilogues.
llvm-svn: 246235
Fixes PR24602: r245689 introduced an unguarded use of
SelectionDAG::FoldConstantArithmetic, which returns 0 when it fails
because of opaque (hoisted) constants.
llvm-svn: 246217