This patch enables redundant sign- and zero-extension elimination in PowerPC MI Peephole pass.
If the input value of a sign- or zero-extension is known to be already sign- or zero-extended, the operation is redundant and can be eliminated.
One common case is sign-extensions for a method parameter or for a method return value; they must be sign- or zero-extended as defined in PPC ELF ABI.
For example of the following simple code, two extsw instructions are generated before the invocation of int_func and before the return. With this patch, both extsw are eliminated.
void int_func(int);
void ii_test(int a) {
if (a & 1) return int_func(a);
}
Such redundant sign- or zero-extensions are quite common in many programs; e.g. I observed about 60,000 occurrences of the elimination while compiling the LLVM+CLANG.
Differential Revision: https://reviews.llvm.org/D31319
llvm-svn: 315888
The global entry point prologue currently assumes that the TOC
associated with a function is less than 2GB away from the function
entry point. This is always true when using the medium or small
code model, but may not be the case when using the large code model.
This patch adds a new variant of the ELFv2 global entry point prologue
that lifts the 2GB restriction when building with -mcmodel=large.
This works by emitting a quadword containing the distance from the
function entry point to its associated TOC immediately before the
entry point, and then using a prologue like:
ld r2,-8(r12)
add r2,r2,r12
Since creation of the entry point prologue is now split across two
separate routines (PPCLinuxAsmPrinter::EmitFunctionEntryLabel emits
the data word, PPCLinuxAsmPrinter::EmitFunctionBodyStart the prolog
code), I've switched to using named labels instead of just temporaries
to indicate the locations of the global and local entry points and the
new TOC offset data word.
These names are provided by new routines in PPCFunctionInfo modeled
after the existing PPCFunctionInfo::getPICOffsetSymbol.
Note that a corresponding change was committed to GCC here:
https://gcc.gnu.org/ml/gcc-patches/2015-12/msg00355.html
Reviewers: hfinkel
Differential Revision: http://reviews.llvm.org/D15500
llvm-svn: 257597
Summary:
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
This patch is quite boring overall, except for some uglyness in
ASMPrinter which has a getDataLayout function but has some clients
that use it without a Module (llmv-dsymutil, llvm-dwarfdump), so
some methods are taking a DataLayout as parameter.
Reviewers: echristo
Subscribers: yaron.keren, rafael, llvm-commits, jholewinski
Differential Revision: http://reviews.llvm.org/D11090
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 242386
derived classes.
Since global data alignment, layout, and mangling is often based on the
DataLayout, move it to the TargetMachine. This ensures that global
data is going to be layed out and mangled consistently if the subtarget
changes on a per function basis. Prior to this all targets(*) have
had subtarget dependent code moved out and onto the TargetMachine.
*One target hasn't been migrated as part of this change: R600. The
R600 port has, as a subtarget feature, the size of pointers and
this affects global data layout. I've currently hacked in a FIXME
to enable progress, but the port needs to be updated to either pass
the 64-bitness to the TargetMachine, or fix the DataLayout to
avoid subtarget dependent features.
llvm-svn: 227113
shorter/easier and have the DAG use that to do the same lookup. This
can be used in the future for TargetMachine based caching lookups from
the MachineFunction easily.
Update the MIPS subtarget switching machinery to update this pointer
at the same time it runs.
llvm-svn: 214838
This adds initial support for PPC32 ELF PIC (Position Independent Code; the
-fPIC variety), thus rectifying a long-standing deficiency in the PowerPC
backend.
Patch by Justin Hibbits!
llvm-svn: 213427