- MBB address is only valid as an immediate value in Small & Static
code/relocation models. On other models, LEA is needed to load IP address of
the restore MBB.
- A minor fix of MBB in MC lowering is added as well to enable target
relocation flag being propagated into MC.
llvm-svn: 166084
This is just as fast, and it makes it possible to avoid leaking the
UsedPhysRegs BitVector implementation through
MachineRegisterInfo::addPhysRegsUsed().
llvm-svn: 166083
to handle an addition class of early-return instructions we find in arm code:
tail-call optimziation returns where we restore the register state from the
function entry and jump directly (not branch & link) to another function --
when that other function returns, it will return to our caller.
Previously this mid-function epilogue sequence was not being correctly detected.
We would not re-instate the prologue setup instructions for the rest of the function
so unwinds would break from that point until the end of the function.
<rdar://problem/12502597>
llvm-svn: 166081
This is consistent/interoperable with GCC 4.7 (& __cxa_deleted_function isn't
present in 4.4 - not sure when it got added, but you'll need something with
that function available for this to work).
llvm-svn: 166069
PR14098 contains an example where we would rematerialize a MOV8ri
immediately after the original instruction:
%vreg7:sub_8bit<def> = MOV8ri 9; GR32_ABCD:%vreg7
%vreg22:sub_8bit<def> = MOV8ri 9; GR32_ABCD:%vreg7
Besides being pointless, it is also wrong since the original instruction
only redefines part of the register, and the value read by the new
instruction is wrong.
The problem was the LiveRangeEdit::allUsesAvailableAt() didn't
special-case OrigIdx == UseIdx and found the wrong SSA value.
llvm-svn: 166068
Because PNaCl bitcode must be target-independent, it uses some
different bitcode representations from other targets (e.g. byval and
sret for structures). This means that without additional type
information, it cannot meet some native ABI requirements for some
targets (e.g. passing structures containing unions by value on
x86-64). To allow generation of code which uses the correct native
ABIs, we also support triples such as x86_64-nacl, which uses
target-dependent IR (as opposed to le32-nacl, which uses byval and
sret).
To allow interoperation between the two types of code, this patch adds
a calling convention attribute to be used in code compiled with the
target-dependent triple, which will generate code using the le32-style
bitcode. This calling convention does not need to be explicitly
supported in the backend because it determines bitcode representation
rather than native conventions (the backend just needs to undersand
how to handle byval and sret for the Native Client OS).
This patch implements __attribute__((pnaclcall)) to generate calls in
bitcode according to the le32 bitcode conventions, an attribute which
is accepted by any Native Client target, but issues a warning
otherwise.
llvm-svn: 166065
An obfuscated splat is where the frontend poorly generates code for a splat
using several different shuffles to create the splat, i.e.,
%A = load <4 x float>* %in_ptr, align 16
%B = shufflevector <4 x float> %A, <4 x float> undef, <4 x i32> <i32 0, i32 0, i32 undef, i32 undef>
%C = shufflevector <4 x float> %B, <4 x float> %A, <4 x i32> <i32 0, i32 1, i32 4, i32 undef>
%D = shufflevector <4 x float> %C, <4 x float> %A, <4 x i32> <i32 0, i32 1, i32 2, i32 4>
llvm-svn: 166061
to work properly; when doing bare-boards rom debugging
force the OS to be one of those when initializing llvm.
<rdar://problem/12504138>
llvm-svn: 166057
This patch fixes an issue where if lldb fails to attach to a process (ie. invalid pid) on Linux, the process monitor thread gets stuck waiting for a signal from the attach thread, which never comes due to not being signaled. It also implements StopOpThread which is used for both attach/launch cases as I'm not aware of any special handling needed for the attach case. Also, propagate 'Error' from the Detach function instead of using a bool.
llvm-svn: 166055
We expand varargs in clang and the call site is handled in the back end, it is
hard to match exactly how illegal vectors are handled in the backend. Therefore,
we legalize the illegal vector types in clang:
if (Size <= 32), legalize to i32.
if (Size == 64), legalize to v2i32.
if (Size == 128), legalize to v4i32.
if (Size > 128), use indirect.
rdar://12439123
llvm-svn: 166043
We create an aligned temporary space and copy the content over from ap.cur to
the temporary space. This is necessary if the natural alignment of the type is
greater than the ABI alignment.
rdar://12439123
llvm-svn: 166040
This implementation doesn't warn on anything that GCC doesn't warn on with the
exception of templates specializations (GCC doesn't warn, Clang does). The
specific skipped cases (boolean, constant expressions, enums) are open for
debate/adjustment if anyone wants to demonstrate that GCC is being overly
conservative here. The only really obvious false positive I found was in the
Clang regression suite's MPI test - apparently MPI uses specific flag values in
pointer constants. (eg: #define FOO (void*)~0)
llvm-svn: 166039
command line to dotest.py, replace / with _ in
the logfile names that mention that compiler so
that we don't try to put log files in weird
places.
llvm-svn: 166038
- Add custom FP_TO_SINT on v8i16 (and v8i8 which is legalized as v8i16 due to
vector element-wise widening) to reduce DAG combiner and its overhead added
in X86 backend.
llvm-svn: 166036
don't try the normal GetOrCreateLLVM. The latter could drop the weak
atrtibute on the second reference, if there is no explicit declaration
of the aliasee.
llvm-svn: 166032