This is the last one in a series of patches to support better code generation for bitfield insert.
BitPermutationSelector already support ISD::ZERO_EXTEND but not TRUNCATE.
This patch adds support for ISD:TRUNCATE in BitPermutationSelector.
For example of this test case,
struct s64b {
int a:4;
int b:16;
int c:24;
};
void bitfieldinsert64b(struct s64b *p, unsigned char v) {
p->b = v;
}
the selection DAG loos like:
t14: i32,ch = load<(load 4 from %ir.0)> t0, t2, undef:i64
t18: i32 = and t14, Constant:i32<-1048561>
t4: i64,ch = CopyFromReg t0, Register:i64 %1
t22: i64 = AssertZext t4, ValueType:ch:i8
t23: i32 = truncate t22
t16: i32 = shl nuw nsw t23, Constant:i32<4>
t19: i32 = or t18, t16
t20: ch = store<(store 4 into %ir.0)> t14:1, t19, t2, undef:i64
By handling truncate in the BitPermutationSelector, we can use information from AssertZext when selecting t19 and skip the mask operation corresponding to t18.
So the generated sequences with and without this patch are
without this patch
rlwinm 5, 5, 0, 28, 11 # corresponding to t18
rlwimi 5, 4, 4, 20, 27
with this patch
rlwimi 5, 4, 4, 12, 27
Differential Revision: https://reviews.llvm.org/D49076
llvm-svn: 350118
Deletion of dead blocks in arbitrary order may lead to failure
of assertion in `DeleteDeadBlock` that requires that we have
deleted all predecessors before we can delete the current block.
We should instead delete them in RPO order.
llvm-svn: 350116
If we are changing the MI operand from Reg to Imm, we need also handle its implicit use if have.
Differential Revision: https://reviews.llvm.org/D56078
llvm-svn: 350115
For atomic value operand which less than 4 bytes need to be masked.
And the related operation to calculate the newvalue can be done in 32 bit gprc.
So just use gprc for mask and value calculation.
Differential Revision: https://reviews.llvm.org/D56077
llvm-svn: 350113
Summary:
This will make migrating code easier and generally seems like a good collection
of API improvements.
Some of these APIs seem like more consistent / better naming of existing
ones. I've retained the old names for migration simplicit and am just
adding the new ones in this commit. I'll try to garbage collect these
once CallSite is gone.
Subscribers: sanjoy, mcrosier, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D55638
llvm-svn: 350109
With this, check-clang runs and passes all of clang's lit tests. It doesn't run
any of its unit tests yet.
Like with check-lld, running just ninja -C out/gn will build all prerequisites
needed to run tests, but it won't run the tests (so that the build becomes
clean after one build). Running ninja -C out/gn check-clang will build
prerequisites if needed and run the tests. The check-clang target never becomes
clean and runs tests every time.
Differential Revision: https://reviews.llvm.org/D56095
llvm-svn: 350108
Create PMULDQ/PMULUDQ as long as the number of elements is a power of 2.
This seems to give some improvements in our ability to use SimplifyDemandedBits.
llvm-svn: 350084
Make each of the helper functions only return their comparison node and the condition code. Leave X86ISD::SETCC creation to the LowerSETCC function itself.
Looking into whether we can use this code directly in BRCOND and SELECT lowering instead of going through LowerSETCC which creates an X86ISD::SETCC node we need to look through.
llvm-svn: 350082
Only one of the 3 callers of LowerAndToBT need the SETCC node. Two of them have to look through it to find the operands they really need. Instead create it after the one call that needs it.
LowerAndToBT now returns both the BT node and the X86 specific condition code separately.
llvm-svn: 350081
Summary:
These instructions are currently unused in our backend, but for
completeness it is good to support them, so they can be used with
the assembler in hand-written code.
Tests are very basic, signature support missing much like other blocks.
Reviewers: dschuff, aheejin
Subscribers: sbc100, jgravelle-google, sunfish, llvm-commits
Differential Revision: https://reviews.llvm.org/D55973
llvm-svn: 350079
Summary:
It does so using a simple nesting stack, and gives clear errors upon
violation. This is unique to wasm, since most CPUs do not have
any nested constructs.
Had to add an end of file check to the general assembler for this.
Note: if/else/end instructions are not currently supported in our
tablegen defs, so these tests will be enabled in a follow-up.
They already pass the nesting check.
Reviewers: dschuff, aheejin
Subscribers: sbc100, jgravelle-google, sunfish, llvm-commits
Differential Revision: https://reviews.llvm.org/D55797
llvm-svn: 350078
Summary:
Existing LIR recognizes CTLZ where shifting input variable right until it is zero. (Shift-Until-Zero idiom)
This commit:
1. Augments Shift-Until-Zero idiom to recognize CTTZ where input variable is shifted left.
2. Prepare for BitScan idiom recognition.
Patch by Yuanfang Chen (tabloid.adroit)
Reviewers: craig.topper, evstupac
Reviewed By: craig.topper
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D55876
llvm-svn: 350074
Fixes crash reported after r347354 for frontends that don't always emit
'this' pointers for methods. Now we will silently produce debug info
that makes functions like this look like static methods, which seems
reasonable.
llvm-svn: 350073
The patch adds a possibility to make library calls on NVPTX.
An important thing about library functions - they must be defined within
the current module. This basically should guarantee that we produce a
valid PTX assembly (without calls to not defined functions). The one who
wants to use the libcalls is probably will have to link against
compiler-rt or any other implementation.
Currently, it's completely impossible to make library calls because of
error LLVM ERROR: Cannot select: i32 = ExternalSymbol '...'. But we can
lower ExternalSymbol to TargetExternalSymbol and verify if the function
definition is available.
Also, there was an issue with a DAG during legalisation. When we expand
instruction into libcall, the inner call-chain isn't being "integrated"
into outer chain. Since the last "data-flow" (call retval load) node is
located in call-chain earlier than CALLSEQ_END node, the latter becomes
a leaf and therefore a dead node (and is being removed quite fast).
Proposed here solution relies on another data-flow pseudo nodes
(ProxyReg) which purpose is only to keep CALLSEQ_END at legalisation and
instruction selection phases - we remove the pseudo instructions before
register scheduling phase.
Patch by Denys Zariaiev!
Differential Revision: https://reviews.llvm.org/D34708
llvm-svn: 350069
Add widen scalar for type index 1 (i1 condition) for G_SELECT.
Select G_SELECT for pointer, s32(integer) and smaller low level
types on MIPS32.
Differential Revision: https://reviews.llvm.org/D56001
llvm-svn: 350063
Summary:
This patch is to fix the bug imported by rL341634.
In above submit , the the return type of ISD::ADDE is
14224: SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i64),
but in fact, the second return type of ISD::ADDE should be
MVT::Glue not MVT::i64.
Reviewed By: hfinkel
Differential Revision: https://reviews.llvm.org/D55977
llvm-svn: 350061
GN wants the NOSORT line to be the first line of a comment block, not the last
line.
I sent https://gn-review.googlesource.com/c/gn/+/3560 to support having it in
the last line too, but since it will be a while until everyone has that change
even if it's expected, use the form that works today.
Differential Revision: https://reviews.llvm.org/D56065
llvm-svn: 350060
This is an alternative to what I attempted in D56057.
GetDemandedBits is a special version of SimplifyDemandedBits that allows simplifications even when the operand has other uses. GetDemandedBits will only do simplifications that allow a node to be bypassed. It won't create new nodes or alter any of the other users.
I had to add support for bypassing SIGN_EXTEND_INREG to GetDemandedBits.
Based on a patch that Simon Pilgrim sent me in email.
Fixes PR40142.
llvm-svn: 350059
libclang is somewhat incomplete. It's just enough to get check-clang to pass,
but that requires it to be pretty complete. The biggest thing is that it's not
built as a shared library on Linux. The libclang/BUILD.gn file has a comment
with details on what else is missing.
Differential Revision: https://reviews.llvm.org/D56059
llvm-svn: 350054
This patch teaches LoopSimplifyCFG to remove dead exiting edges
from loops.
Differential Revision: https://reviews.llvm.org/D54025
Reviewed By: fedor.sergeev
llvm-svn: 350049
Both of these places reference memset-like loops. Memset is precise.
Trying to keep these patches super small so they're easily post-commit
verifiable, as requested in D44748.
llvm-svn: 350044
More migration so we can disable the implicit int -> LocationSize
conversion.
All of these are either scatter/gather'ed vector instructions, or direct
loads. Hence, they're all precise.
Perhaps if we see way more getTypeStoreSize calls, we can make a
getTypeStoreLocationSize (or similar) as a wrapper that applies this
::precise. Doesn't appear that it's a good idea to make getTypeStoreSize
return a LocationSize itself, however.
llvm-svn: 350042
Remove the TESTmr isel patterns and add another postprocessing combine for TESTrr+ANDrm->TESTmr. We already have a postprocessing combine for TESTrr+ANDrr->TESTrr. With this we can give ANDN a chance to match first. And clean it up during post processing if we ended up with just a regular AND.
This is another step towards my plan to gut EmitTest and do more flag handling during isel matching or by using optimizeCompare.
llvm-svn: 350038
Summary:
SetVector uses both DenseSet and vector, which is time/memory inefficient. The points are represented as natural numbers so we can replace the DenseSet part by indexing into a vector<char> instead.
Don't cargo cult the pseudocode on the wikipedia DBSCAN page. This is a standard BFS style algorithm (the similar loops have been used several times in other LLVM components): every point is processed at most once, thus the queue has at most NumPoints elements. We represent it with a vector and allocate it outside of the loop to avoid allocation in the loop body.
We check `Processed[P]` to avoid enqueueing a point more than once, which also nicely saves us a `ClusterIdForPoint_[Q].isUndef()` check.
Many people hate the oneshot abstraction but some favor it, therefore we make a compromise, use a lambda to abstract away the neighbor adding process.
Delete the comment `assert(Neighbors.capacity() == (Points_.size() - 1));` as it is wrong.
llvm-svn: 350035
It's dangerous to knowingly create an illegal vector type
no matter what stage of combining we're in.
This prevents the missed folding/scalarization seen in:
https://bugs.llvm.org/show_bug.cgi?id=40146
llvm-svn: 350034
Trying to keep these patches super small so they're easily post-commit
verifiable, as requested in D44748.
srcSize is derived from the size of an alloca, and we quit out if the
size of that is > the size of the thing we're copying to. Hence, we
should always copy everything over, so these sizes are precise.
Don't make srcSize itself a LocationSize, since optionality isn't
helpful, and we do some comparisons against other sizes elsewhere in
that function.
llvm-svn: 350019
Trying to keep these patches super small so they're easily post-commit
verifiable, as requested in D44748.
This one sadly isn't *super* small, but all of the changes here are
either to:
- libfuncs that are passed a constant size (memcpy, memset, ...)
- instructions that store/load a constant size
So they have to be precise
llvm-svn: 350017
Keeping these patches super small so they're easily post-commit
verifiable, as requested in D44748.
This tries to find literal loads/stores of the given type, so this has
to be precise.
llvm-svn: 350016
This is difficult/not possible to test in LLVM, but is visible as a
crash in LLD when parsing DWARF to generate gdb-index.
This function is called by llvm-dwarfdump when parsing high_pc for
non-verbose output (to print the actual high_pc rather than the low_pc
relative value), but in that case llvm-dwarfdump doesn't print section
names (if it did, it would hit this problem).
We could add some other features to llvm-dwarfdump to expose this, but
nothing really springs to my mind. I will add a test to lld, though.
llvm-svn: 350010
trunc (add X, C ) --> add (trunc X), C'
If we're throwing away the top bits of an 'add' instruction, do it in the narrow destination type.
This makes the truncate-able opcode list identical to the sibling transform done in IR (in instcombine).
This change used to show regressions for x86, but those are gone after D55494.
This gets us closer to deleting the x86 custom function (combineTruncatedArithmetic)
that does almost the same thing.
Differential Revision: https://reviews.llvm.org/D55866
llvm-svn: 350006
The missed load folding noticed in D55898 is visible independent of that change
either with an adjusted IR pattern to start or with AVX2/AVX512 (where the build
vector becomes a broadcast first; movddup is not produced until we get into isel
via tablegen patterns).
Differential Revision: https://reviews.llvm.org/D55936
llvm-svn: 350005
@bextr64_32_b1 is extracted from hotpath of real-world code
(RawSpeed BitStream<>::peekBitsNoFill()) after `clang -O3`.
@bextr64_32_b2/@bextr64_32_b0 is the same pattern,
but with trunc done last, showing how i think it can be handled:
https://rise4fun.com/Alive/K4Bhttps://rise4fun.com/Alive/qC9
It is possible that middle-end should do some of this, too.
https://bugs.llvm.org/show_bug.cgi?id=36419
llvm-svn: 349998
Currently the section name (& possibly number) is only printed on
addresses in ranges - but no reason it couldn't also be displayed on
other addresses (like low/high PC).
Refactor in that direction by pulling out the section lookup and name
ambiguity dumping logic into a reusable helper.
llvm-svn: 349995
Verified by comparing the output of `otool -P bin/clang` between the GN and the
CMake build.
Differential Revision: https://reviews.llvm.org/D55984
llvm-svn: 349992
The intent is to add the build file for clang/lib/StaticAnalyzer/Frontend; everything else is pulled in by that.
Differential Revision: https://reviews.llvm.org/D55978
llvm-svn: 349986
NVPTXAsmPrinter::doInitialization() was creating an NVPTXSubtarget on
the stack. This object is huge, about 80kb. Also it's slow to create.
And it's all redundant; we have one in NVPTXTargetMachine anyway!
llvm-svn: 349982
Propagate the llvm::Error a little further up. This is NFC for
llvm-dwarfdump in this change, but allows ld.lld to emit more precise
error messages about which object and archive the erroneous DWARF is in.
llvm-svn: 349978
Summary:
The "single parameter" .file directive appears to be an ELF-only feature
that is intended to insert the main source filename into the string
table table.
I noticed that if you assemble an ELF .s file for COFF, typically it
will assert right away on a .file directive near the top of the file. My
first change was to make this emit a proper error in the asm parser so
that we don't assert so easily.
However, COFF actually does have some support for this directive, and if
you emit an object file, llvm-mc does not assert. When emitting a COFF
object, MC will take those file names and create "debug" symbol table
entries for them. I'm not familiar with these kinds of symbol table
entries, and I'm not aware of any users of them, but @compnerd added
them a while ago. They don't introduce absolute paths, and most main
source file paths are short enough that this extra entry shouldn't cause
any problems, so I enabled the flag in MCAsmInfoCOFF that indicates that
it's supported.
This has the side effect of adding an extra debug symbol to every object
produced by clang, which is a pretty big functional change. My question
is, should we keep the functionality or remove it in the name of symbol
table minimalism?
Reviewers: mstorsjo, compnerd
Subscribers: hiraditya, compnerd, llvm-commits
Differential Revision: https://reviews.llvm.org/D55900
llvm-svn: 349976
Summary:
Added a pair of APIs for encoding/decoding the 3 components of a DWARF discriminator described in http://lists.llvm.org/pipermail/llvm-dev/2016-October/106532.html: the base discriminator, the duplication factor (useful in profile-guided optimization) and the copy index (used to identify copies of code in cases like loop unrolling)
The encoding packs 3 unsigned values in 32 bits. This CL addresses 2 issues:
- communicates overflow back to the user
- supports encoding all 3 components together. Current APIs assume a sequencing of events. For example, creating a new discriminator based on an existing one by changing the base discriminator was not supported.
Reviewers: davidxl, danielcdh, wmi, dblaikie
Reviewed By: dblaikie
Subscribers: zzheng, dmgreen, aprantl, JDevlieghere, llvm-commits
Differential Revision: https://reviews.llvm.org/D55681
llvm-svn: 349973
Originally committed in r349333, reverted in r349353.
GCC emitted these unconditionally on/before 4.4/March 2012
Clang emitted these unconditionally on/before 3.5/March 2014
This improves performance when parsing CUs (especially those using split
DWARF) that contain no code ranges (such as the mini CUs that may be
created by ThinLTO importing - though generally they should be/are
avoided, especially for Split DWARF because it produces a lot of very
small CUs, which don't scale well in a bunch of other ways too
(including size)).
The revert was due to a (Google internal) test that had some checked in old
object files missing DW_AT_ranges. That's since been fixed.
llvm-svn: 349968
Instruction::isLifetimeStartOrEnd() checks whether an Instruction is an
llvm.lifetime.start or an llvm.lifetime.end intrinsic.
This was suggested as a cleanup in D55967.
Differential Revision: https://reviews.llvm.org/D56019
llvm-svn: 349964
This fixes the patterns that have or/and as a root. 'and' is handled differently since thy usually have a CMP wrapped around them.
I had to look for uses of the CF flag because all these nodes have non-standard CF flag behavior. A real or/xor would always clear CF. In practice we shouldn't be using the CF flag from these nodes as far as I know.
Differential Revision: https://reviews.llvm.org/D55813
llvm-svn: 349962
The BEXTR instruction documents the SF bit as undefined.
The TBM BEXTR instruction has the same issue, but I'm not sure how to test it. With the control being an immediate we can determine the sign bit is 0 or the BEXTR would have been removed.
Fixes PR40060
Differential Revision: https://reviews.llvm.org/D55807
llvm-svn: 349956
Summary:
Don't peel of the offset if the resulting base could possibly be negative in Indirect addressing.
This is because the M0 field is of unsigned.
This patch achieves the similar goal as https://reviews.llvm.org/D55241, but keeps the optimization
if the base is known unsigned.
Reviewers:
arsemn
Differential Revision:
https://reviews.llvm.org/D55568
llvm-svn: 349951
Weak symbols are supposed to be supported in the ELF TextAPI
implementation, but the YAML handler didn't read or write the `Weak`
member of ELFSymbol. This change adds the YAML mapping and updates tests
to ensure correct behavior.
Differential Revision: https://reviews.llvm.org/D56020
llvm-svn: 349950
Summary:
BasicAA has special logic for unescaped allocas, which normally applies
equally well to dynamic and static allocas. However, llvm.stackrestore
has the power to end the lifetime of dynamic allocas, without referring
to them directly.
stackrestore is already marked with the most conservative memory
modification attributes, but because the alloca is not escaped, the
normal logic produces incorrect results. I think BasicAA needs a special
case here to teach it about the relationship between dynamic allocas and
stackrestore.
Fixes PR40118
Reviewers: gbiv, efriedma, george.burgess.iv
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D55969
llvm-svn: 349945
Currently, runtime unrolling does not support loops where multiple
exiting blocks exit to the latchExit. Added TODO and other code
clarifications for ConnectProlog code.
llvm-svn: 349944
This is admittedly a narrow fix for the problem:
https://bugs.llvm.org/show_bug.cgi?id=37502
...but as the XOP restriction shows, it's a maze to get this right.
In the motivating example, note that we have movddup before SSE4.1 and
again with AVX2. That's because insertps isn't available pre-SSE41 and
vbroadcast is (more generally) available with AVX2 (and the splat is
reduced to movddup via isel pattern).
Differential Revision: https://reviews.llvm.org/D55898
llvm-svn: 349937
This adds support for widening G_FCEIL in LegalizerHelper and
AArch64LegalizerInfo. More specifically, it teaches the AArch64 legalizer to
widen G_FCEIL from a 16-bit float to a 32-bit float when the subtarget doesn't
support full FP 16.
This also updates AArch64/f16-instructions.ll to show that we perform the
correct transformation.
llvm-svn: 349927
This adds an AVX512 run as suggested in D55936.
The test didn't really belong with other build vector tests
because that's not the pattern here. I don't see much value
in adding 64-bit RUNs because they wouldn't exercise the
isel patterns that we're aiming to expose.
llvm-svn: 349920
Summary:
This commit adds a check-pstl CMake target that will run the tests
we currently have for pstl. Those tests are not using LLVM lit yet,
but switching them over should be a transparent change. With this
change, we can start relying on the `check-pstl` target for workflows
and CI.
Note that this commit purposefully does not support the pre-monorepo
layout (with subprojects in projects/), since LLVM is moving towards
the monorepo layout anyway.
Reviewers: jfb
Subscribers: mgorny, jkorous, dexonsmith, libcxx-commits, mclow.lists, rodgert
Differential Revision: https://reviews.llvm.org/D55963
llvm-svn: 349919
Summary:
This function checks whether the mappings in the interval map overlap
with the given range [a;b]. The motivation is to enable checking for
overlap before inserting a new interval into the map.
Reviewers: vsk, dblaikie
Subscribers: dexonsmith, kristina, llvm-commits
Differential Revision: https://reviews.llvm.org/D55760
llvm-svn: 349898
-print-after IR printing generally can not print the IR unit (Loop or SCC)
which has just been invalidated by the pass. However, when working in -print-module-scope
mode even if Loop was invalidated there is still a valid module that we can print.
Since we can not access invalidated IR unit from AfterPassInvalidated instrumentation
point we can remember the module to be printed *before* pass. This change introduces
BeforePass instrumentation that stores all the information required for module printing
into the stack and then after pass (in AfterPassInvalidated) just print whatever
has been placed on stack.
Reviewed By: philip.pfaffe
Differential Revision: https://reviews.llvm.org/D55278
llvm-svn: 349896
- When signing return addresses with -msign-return-address=<scope>{+<key>},
either the A key instructions or the B key instructions can be used. To
correctly authenticate the return address, the unwinder/debugger must know
which key was used to sign the return address.
- When and exception is thrown or a break point reached, it may be necessary to
unwind the stack. To accomplish this, the unwinder/debugger must be able to
first authenticate an the return address if it has been signed.
- To enable this, the augmentation string of CIEs has been extended to allow
inclusion of a 'B' character. Functions that are signed using the B key
variant of the instructions should have and FDE whose associated CIE has a 'B'
in the augmentation string.
- One must also be able to preserve these semantics when first stepping from a
high level language into assembly and then, as a second step, into an object
file. To achieve this, I have introduced a new assembly directive
'.cfi_b_key_frame ', that tells the assembler the current frame uses return
address signing with the B key.
- This ensures that the FDE is associated with a CIE that has 'B' in the
augmentation string.
Differential Revision: https://reviews.llvm.org/D51798
llvm-svn: 349895
It seems better to avoid using the callback if possible since
there are coverage assertions which are disabled if this is used.
Also fix missing tests. Only test the legal cases since it seems
legalization for build_vector is quite lacking.
llvm-svn: 349878
This verification is linear in the size of the function, so it can cause
a quadratic compile-time explosion in a function with many loops to
unroll.
Differential Revision: https://reviews.llvm.org/D54732
llvm-svn: 349871
This shortens the switches in X86ISelDAGToDAG.cpp to only need to check condition code instead of a list of opcodes.
This also fixes a bug where the memory forms of SETcc were missing from hasNoCarryFlagUses.
llvm-svn: 349868
This saves materializing the immediate. The additional forms are less
common (they don't usually show up for bitfield insert/extract), but
they're still relevant.
I had to add a new target hook to prevent DAGCombine from reversing the
transform. That isn't the only possible way to solve the conflict, but
it seems straightforward enough.
Differential Revision: https://reviews.llvm.org/D55630
llvm-svn: 349857
Summary:
This function is very similar to add_llvm_library(), so this patch merges it
into add_llvm_library() and replaces all calls to add_llvm_loadable_module(lib ...)
with add_llvm_library(lib MODULE ...)
Reviewers: philip.pfaffe, beanz, chandlerc
Reviewed By: philip.pfaffe
Subscribers: chapuni, mgorny, llvm-commits
Differential Revision: https://reviews.llvm.org/D51748
llvm-svn: 349839
The check-lld target was missing the dependency on llvm-nm and llvm-objdump in that case.
Differential Revision: https://reviews.llvm.org/D55941
llvm-svn: 349836
Mostly boring, except for the spurious dependency on StaticAnalyzer/Checkers --
see comments in the code.
Differential Revision: https://reviews.llvm.org/D55927
llvm-svn: 349832
Nothing really interesting. One thing to consider is where the clang_tablegen()
invocations that generate files that are private to a library should be. The
CMake build puts them in clang/include/clang/Parse (in this case), but maybe
putting them right in clang/lib/Parse/BUILD.gn makes mor sense. (For
clang_tablegen() calls that generate .inc files used by the public headers,
putting the call in the public BUILD file makes sense.)
For now, I've put the build file in the public header folder, since that
matches CMake and what I did in the last 2 clang patches, but I'm not sure I
like this.
Differential Revision: https://reviews.llvm.org/D55925
llvm-svn: 349831
This fixes all cases of errors in asan+ubsan builds.
Also use std::copy instead of if+memcpy in the previously updated spot,
for consistency.
llvm-svn: 349826
If you don't do this, then if you hit a G_LOAD in getInstrMapping, you'll end
up with GPRs on the G_FCEIL instead of FPRs. This causes a fallback.
Add it to the switch, and add a test verifying that this happens.
llvm-svn: 349822
When deciding lazily whether a CU would be split or non-split I
accidentally dropped some handling for the line tables comp_dir (by
doing it lazily it was too late to be handled properly by the MC line
table code).
Move that bit of the code back to the non-lazy place.
llvm-svn: 349819