The SELR(Mux) instructions can be converted to two-address form as LOCR(Mux)
instructions whenever one of the sources are the same reg as dest. By adding
this mapping in getTwoOperandOpcode(), we get:
- Two-address hints in getRegAllocationHints() for select register
instructions.
- No need anymore for special handling in SystemZShortenInst.cpp -
shortenSelect() removed.
The two-address hints are now added before the GRX32 hints, which should be
preferred.
Review: Ulrich Weigand
https://reviews.llvm.org/D68870
It was recently discovered that the handling of CC values was actually broken
since overflow was not properly handled ('nsw' flag not checked for).
Add and sub instructions now have a new target specific instruction flag
named SystemZII::CCIfNoSignedWrap. It means that the CC result can be used
instead of a compare with 0, but only if the instruction has the 'nsw' flag
set.
This patch also adds the improvements of conversion to logical instructions
and the analyzing of add with immediates, to be able to eliminate more
compares.
Review: Ulrich Weigand
https://reviews.llvm.org/D66868
The improvement in the machine verifier for operand types (D63973) discovered
a bad operand in a test using a PPA instruction. It was an immediate 0 where
a register was expected.
This patch fixes this (NFC) by now making the PPA second register operand
NoRegister instead of a zero immediate in the MIR.
Review: Ulrich Weigand
https://reviews.llvm.org/D70501
The result integer does not need to be the same width as the input.
AMDGPU, NVPTX, and Hexagon all have patterns working around the types
matching. GlobalISel defines these as being different type indexes.
llvm-svn: 371797
This patch series adds support for the next-generation arch13
CPU architecture to the SystemZ backend.
This includes:
- Basic support for the new processor and its features.
- Assembler/disassembler support for new instructions.
- CodeGen for new instructions, including new LLVM intrinsics.
- Scheduler description for the new processor.
- Detection of arch13 as host processor.
Note: No currently available Z system supports the arch13
architecture. Once new systems become available, the
official system name will be added as supported -march name.
llvm-svn: 365932
This patch aims to reduce spilling and register moves by using the 3-address
versions of instructions per default instead of the 2-address equivalent
ones. It seems that both spilling and register moves are improved noticeably
generally.
Regalloc hints are passed to increase conversions to 2-address instructions
which are done in SystemZShortenInst.cpp (after regalloc).
Since the SystemZ reg/mem instructions are 2-address (dst and lhs regs are
the same), foldMemoryOperandImpl() can no longer trivially fold a spilled
source register since the reg/reg instruction is now 3-address. In order to
remedy this, new 3-address pseudo memory instructions are used to perform the
folding only when the dst and lhs virtual registers are known to be allocated
to the same physreg. In order to not let MachineCopyPropagation run and
change registers on these transformed instructions (making it 3-address), a
new target pass called SystemZPostRewrite.cpp is run just after
VirtRegRewriter, that immediately lowers the pseudo to a target instruction.
If it would have been possibe to insert a COPY instruction and change a
register operand (convert to 2-address) in foldMemoryOperandImpl() while
trusting that the caller (e.g. InlineSpiller) would update/repair the
involved LiveIntervals, the solution involving pseudo instructions would not
have been needed. This is perhaps a potential improvement (see Phabricator
post).
Common code changes:
* A new hook TargetPassConfig::addPostRewrite() is utilized to be able to run a
target pass immediately before MachineCopyPropagation.
* VirtRegMap is passed as an argument to foldMemoryOperand().
Review: Ulrich Weigand, Quentin Colombet
https://reviews.llvm.org/D60888
llvm-svn: 362868
This adds the FPC (floating-point control register) as a reserved
physical register and models its use by SystemZ instructions.
Note that only the current rounding modes and the IEEE exception
masks are modeled. *Changes* of the FPC due to exceptions (in
particular the IEEE exception flags and the DXC) are not modeled.
At this point, this patch is mostly NFC, but it will prevent
scheduling of floating-point instructions across SPFC/LFPC etc.
llvm-svn: 360570
When performing an add-with-overflow with an immediate in the
range -2G ... -4G, code currently loads the immediate into a
register, which generally takes two instructions.
In this particular case, it is preferable to load the negated
immediate into a register instead, which always only requires
one instruction, and then perform a subtract.
llvm-svn: 357597
For shift and rotate instructions that only use the last 6 bits of the shift
amount, a shift amount of (x*64-s) can be substituted with (-s). This saves
one instruction and a register:
lhi %r1, 64
sr %r1, %r3
sllg %r2, %r2, 0(%r1)
=>
lcr %r1, %r3
sllg %r2, %r2, 0(%r1)
Review: Ulrich Weigand
llvm-svn: 357481
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
The LRV and STRV nodes carry an extra operand to indicate the
type of the memory access. This is redundant, since the nodes
are actually of class MemIntrinsicNode and therefore hold that
same information already as MemoryVT.
NFC intended.
llvm-svn: 345618
The DAG combiner logic to simplify AND masks in shift counts is invalid.
While it is true that the SystemZ shift instructions ignore all but the
low 6 bits of the shift count, it is still invalid to simplify the AND
masks while the DAG still uses the standard shift operators (which are
*not* defined to match the SystemZ instruction behavior).
Instead, this patch performs equivalent operations during instruction
selection. For completely removing the AND, this now happens via
additional DAG match patterns implemented by a multi-alternative
PatFrags. For simplifying a 32-bit AND to a 16-bit AND, the existing DAG
patterns were already mostly OK, they just needed an output XForm to
actually truncate the immediate value.
Unfortunately, the latter change also exposed a bug in TableGen: it
seems XForms are currently only handled correctly for direct operands of
the outermost operation node. This patch also fixes that bug by simply
recurring through the whole pattern. This should be NFC for all other
targets.
Differential Revision: https://reviews.llvm.org/D50096
llvm-svn: 338521
A TableGen instruction record usually contains a DAG pattern that will
describe the SelectionDAG operation that can be implemented by this
instruction. However, there will be cases where several different DAG
patterns can all be implemented by the same instruction. The way to
represent this today is to write additional patterns in the Pattern
(or usually Pat) class that map those extra DAG patterns to the
instruction. This usually also works fine.
However, I've noticed cases where the current setup seems to require
quite a bit of extra (and duplicated) text in the target .td files.
For example, in the SystemZ back-end, there are quite a number of
instructions that can implement an "add-with-overflow" operation.
The same instructions also need to be used to implement just plain
addition (simply ignoring the extra overflow output). The current
solution requires creating extra Pat pattern for every instruction,
duplicating the information about which particular add operands
map best to which particular instruction.
This patch enhances TableGen to support a new PatFrags class, which
can be used to encapsulate multiple alternative patterns that may
all match to the same instruction. It operates the same way as the
existing PatFrag class, except that it accepts a list of DAG patterns
to match instead of just a single one. As an example, we can now define
a PatFrags to match either an "add-with-overflow" or a regular add
operation:
def z_sadd : PatFrags<(ops node:$src1, node:$src2),
[(z_saddo node:$src1, node:$src2),
(add node:$src1, node:$src2)]>;
and then use this in the add instruction pattern:
defm AR : BinaryRRAndK<"ar", 0x1A, 0xB9F8, z_sadd, GR32, GR32>;
These SystemZ target changes are implemented here as well.
Note that PatFrag is now defined as a subclass of PatFrags, which
means that some users of internals of PatFrag need to be updated.
(E.g. instead of using PatFrag.Fragment you now need to use
!head(PatFrag.Fragments).)
The implementation is based on the following main ideas:
- InlinePatternFragments may now replace each original pattern
with several result patterns, not just one.
- parseInstructionPattern delays calling InlinePatternFragments
and InferAllTypes. Instead, it extracts a single DAG match
pattern from the main instruction pattern.
- Processing of the DAG match pattern part of the main instruction
pattern now shares most code with processing match patterns from
the Pattern class.
- Direct use of main instruction patterns in InferFromPattern and
EmitResultInstructionAsOperand is removed; everything now operates
solely on DAG match patterns.
Reviewed by: hfinkel
Differential Revision: https://reviews.llvm.org/D48545
llvm-svn: 336999
This provides an optimized implementation of SADDO/SSUBO/UADDO/USUBO
as well as ADDCARRY/SUBCARRY on top of the new CC implementation.
In particular, multi-word arithmetic now uses UADDO/ADDCARRY instead
of the old ADDC/ADDE logic, which means we no longer need to use
"glue" links for those instructions. This also allows making full
use of the memory-based instructions like ALSI, which couldn't be
recognized due to limitations in the DAG matcher previously.
Also, the llvm.sadd.with.overflow et.al. intrinsincs now expand to
directly using the ADD instructions and checking for a CC 3 result.
llvm-svn: 331203
Currently, an instruction setting the condition code is linked to
the instruction using the condition code via a "glue" link in the
SelectionDAG. This has a number of drawbacks; in particular, it
means the same CC cannot be used by multiple users. It also makes
it more difficult to efficiently implement SADDO et. al.
This patch changes the back-end to represent CC dependencies as
normal values during SelectionDAG matching, along the lines of
how this is handled in the X86 back-end already.
In addition to the core mechanics of updating all relevant patterns,
this requires a number of additional changes:
- We now need to be able to spill/restore a CC value into a GPR
if necessary. This means providing a copyPhysReg implementation
for moves involving CC, and defining getCrossCopyRegClass.
- Since we still prefer to avoid such spills, we provide an override
for IsProfitableToFold to avoid creating a merged LOAD / ICMP if
this would result in multiple users of the CC.
- combineCCMask no longer requires a single CC user, and no longer
need to be careful about preventing invalid glue/chain cycles.
- emitSelect needs to be more careful in marking CC live-in to
the basic block it generates. Also, we can now optimize the
case of multiple subsequent selects with the same condition
just like X86 does.
llvm-svn: 331202
If we have LOCR instructions, select them directly from SelectionDAG
instead of first going through a pseudo instruction and then using
the custom inserter to emit the LOCR.
Provide Select pseudo-instructions for VR32/VR64 if we have vector
instructions, to avoid having to go through the first 16 FPRs
unnecessarily.
If we do not have LOCFHR, prefer using LOCR followed by a move
over a conditional branch.
llvm-svn: 331191
If the MachineInstr uses a custom inserter and is then erased after
instruction selection, there is no use for mapping it to a sched class.
Review: Ulrich Weigand
llvm-svn: 331040
The SystemZ back-end uses a sequence of IPM followed by arithmetic
operations to implement the SETCC primitive. This is currently done
early during SelectionDAG. This patch moves generating those sequences
to much later in SelectionDAG (during PreprocessISelDAG).
This doesn't change much in generated code by itself, but it allows
further enhancements that will be checked-in as follow-on commits.
llvm-svn: 322987
Tabort (transaction abort) does not load from memory.
mayLoad flag removed from corresponding TABORT machine instruction.
Review: Ulrich Weigand
llvm-svn: 319905
This has proven a healthy exercise, as many cases of incorrect instruction
flags were corrected in the process. As part of this, IntrWriteMem was added
to several SystemZ instrinsics.
Furthermore, a bug was exposed in TwoAddress with this change (as incorrect
hasSideEffects flags were removed and instructions could now be sunk), and
the test case for that bugfix (r319646) is included here as
test/CodeGen/SystemZ/twoaddr-sink.ll.
One temporary test regression (one extra copy) which will hopefully go away
in upcoming patches for similar cases:
test/CodeGen/SystemZ/vec-trunc-to-i1.ll
Review: Ulrich Weigand.
https://reviews.llvm.org/D40437
llvm-svn: 319756
The SystemZ compare-and-swap instructions already provide the "success"
indication via a condition-code value, so the default expansion of those
operations generates an unnecessary extra comparsion.
llvm-svn: 314428
This adds support for the main 128-bit atomic operations,
using the SystemZ instructions LPQ, STPQ, and CDSG.
Generating these instructions is a bit more complex than usual
since the i128 type is not legal for the back-end. Therefore,
we have to hook the LowerOperationWrapper and ReplaceNodeResults
TargetLowering callbacks.
llvm-svn: 310094
This adds support for the new 128-bit vector float instructions of z14.
Note that these instructions actually only operate on the f128 type,
since only each 128-bit vector register can hold only one 128-bit
float value. However, this is still preferable to the legacy 128-bit
float instructions, since those operate on pairs of floating-point
registers (so we can hold at most 8 values in registers), while the
new instructions use single vector registers (so we hold up to 32
value in registers).
Adding support includes:
- Enabling the instructions for the assembler/disassembler.
- CodeGen for the instructions. This includes allocating the f128
type now to the VR128BitRegClass instead of FP128BitRegClass.
- Scheduler description support for the instructions.
Note that for a small number of operations, we have no new vector
instructions (like integer <-> 128-bit float conversions), and so
we use the legacy instruction and then reformat the operand
(i.e. copy between a pair of floating-point registers and a
vector register).
llvm-svn: 308196
This patch series adds support for the IBM z14 processor. This part includes:
- Basic support for the new processor and its features.
- Support for new instructions (except vector 32-bit float and 128-bit float).
- CodeGen for new instructions, including new LLVM intrinsics.
- Scheduler description for the new processor.
- Detection of z14 as host processor.
Support for the new 32-bit vector float and 128-bit vector float
instructions is provided by separate patches.
llvm-svn: 308194
Several integer multiply/divide instructions require use of a
register pair as input and output. This patch moves setting
up the input register pair from C++ code to TableGen, simplifying
the whole process and making it more easily extensible.
No functional change.
llvm-svn: 307155
This adds all remaining instructions that were still missing, mostly
privileged and semi-privileged system-level instructions. These are
provided for use with the assembler and disassembler only.
This brings the LLVM assembler / disassembler to parity with the
GNU binutils tools.
llvm-svn: 306876
There are a few instructions provided by the high-word facility (z196)
that we cannot easily exploit for code generation. This patch at least
adds those missing instructions for the assembler and disassembler.
This means that now all nonprivileged instructions up to z13 are
supported by the LLVM assembler / disassembler.
llvm-svn: 306821
This reverts the use of TargetLowering::prepareVolatileOrAtomicLoad
introduced by r196905. Nothing in the semantics of the "volatile"
keyword or the definition of the z/Architecture actually requires
that volatile loads are preceded by a serialization operation, and
no other compiler on the platform actually implements this.
Since we've now seen a use case where this additional serialization
causes noticable performance degradation, this patch removes it.
The patch still leaves in the serialization before atomic loads,
which is now implemented directly in lowerATOMIC_LOAD. (This also
seems overkill, but that can be addressed separately.)
llvm-svn: 306117
The isBarrier/isTerminator flags have been removed from the SystemZ trap
instructions, so that tests do not fail with EXPENSIVE_CHECKS. This was just
an issue at -O0 and did not affect code output on benchmarks.
(Like Eli pointed out: "targets are split over whether they consider their
"trap" a terminator; x86, AArch64, and NVPTX don't, but ARM, MIPS, PPC, and
SystemZ do. We should probably try to be consistent here.". This is still the
case, although SystemZ has switched sides).
SystemZ now returns true in isMachineVerifierClean() :-)
These Generic tests have been modified so that they can be run with or without
EXPENSIVE_CHECKS: CodeGen/Generic/llc-start-stop.ll and
CodeGen/Generic/print-machineinstrs.ll
Review: Ulrich Weigand, Simon Pilgrim, Eli Friedman
https://bugs.llvm.org/show_bug.cgi?id=33047https://reviews.llvm.org/D34143
llvm-svn: 306106
This adds a few missing instructions for the assembler and
disassembler. Those should be the last missing general-
purpose (Chapter 7) instructions for the z10 ISA.
llvm-svn: 302667
This adds the remaining general arithmetic instructions
for assembler / disassembler use. Most of these are not
useful for codegen; a few might be, and those are listed
in the README.txt for future improvements.
llvm-svn: 302665
Using arguments with attribute inalloca creates problems for verification
of machine representation. This attribute instructs the backend that the
argument is prepared in stack prior to CALLSEQ_START..CALLSEQ_END
sequence (see http://llvm.org/docs/InAlloca.htm for details). Frame size
stored in CALLSEQ_START in this case does not count the size of this
argument. However CALLSEQ_END still keeps total frame size, as caller can
be responsible for cleanup of entire frame. So CALLSEQ_START and
CALLSEQ_END keep different frame size and the difference is treated by
MachineVerifier as stack error. Currently there is no way to distinguish
this case from actual errors.
This patch adds additional argument to CALLSEQ_START and its
target-specific counterparts to keep size of stack that is set up prior to
the call frame sequence. This argument allows MachineVerifier to calculate
actual frame size associated with frame setup instruction and correctly
process the case of inalloca arguments.
The changes made by the patch are:
- Frame setup instructions get the second mandatory argument. It
affects all targets that use frame pseudo instructions and touched many
files although the changes are uniform.
- Access to frame properties are implemented using special instructions
rather than calls getOperand(N).getImm(). For X86 and ARM such
replacement was made previously.
- Changes that reflect appearance of additional argument of frame setup
instruction. These involve proper instruction initialization and
methods that access instruction arguments.
- MachineVerifier retrieves frame size using method, which reports sum of
frame parts initialized inside frame instruction pair and outside it.
The patch implements approach proposed by Quentin Colombet in
https://bugs.llvm.org/show_bug.cgi?id=27481#c1.
It fixes 9 tests failed with machine verifier enabled and listed
in PR27481.
Differential Revision: https://reviews.llvm.org/D32394
llvm-svn: 302527
Add assembler support for all atomic instructions that weren't already
supported. Some of those could be used to implement codegen for 128-bit
atomic operations, but this isn't done here yet.
llvm-svn: 288526
Add assembler support for instructions manipulating the FPC.
Also add codegen support via the GCC compatibility builtins:
__builtin_s390_sfpc
__builtin_s390_efpc
llvm-svn: 288525
Move setting of hasSideEffects out of SystemZInstrFormats.td,
to allow use of the format classes for instructions where this
flag shouldn't be set. NFC.
llvm-svn: 288524
This adds assembler support for the instructions provided by the
execution-hint facility (NIAI and BP(R)P). This required adding
support for the new relocation types for 12-bit and 24-bit PC-
relative offsets used by the BP(R)P instructions.
llvm-svn: 288031
This patch adds assembler support for the remaining branch instructions:
the non-relative branch on count variants, and all variants of branch
on index.
The only one of those that can be readily exploited for code generation
is BRCTH (branch on count using a high 32-bit register as count). Do
use it, however, it is necessary to also introduce a hew CHIMux pseudo
to allow comparisons of a 32-bit value agains a short immediate to go
into a high register as well (implemented via CHI/CIH).
This causes a bit of codegen changes overall, but those have proven to
be neutral (or even beneficial) in performance measurements.
llvm-svn: 288029
This patch moves formation of LOC-type instructions from (late)
IfConversion to the early if-conversion pass, and in some cases
additionally creates them directly from select instructions
during DAG instruction selection.
To make early if-conversion work, the patch implements the
canInsertSelect / insertSelect callbacks. It also implements
the commuteInstructionImpl and FoldImmediate callbacks to
enable generation of the full range of LOC instructions.
Finally, the patch adds support for all instructions of the
load-store-on-condition-2 facility, which allows using LOC
instructions also for high registers.
Due to the use of the GRX32 register class to enable high registers,
we now also have to handle the cases where there are still no single
hardware instructions (conditional move from a low register to a high
register or vice versa). These are converted back to a branch sequence
after register allocation. Since the expandRAPseudos callback is not
allowed to create new basic blocks, this requires a simple new pass,
modelled after the ARM/AArch64 ExpandPseudos pass.
Overall, this patch causes significantly more LOC-type instructions
to be used, and results in a measurable performance improvement.
llvm-svn: 288028
This adds support for the compare logical and trap (memory)
instructions that were added as part of the miscellaneous
instruction extensions feature with zEC12.
llvm-svn: 286587
This adds support for the LZRF/LZRG/LLZRGF instructions that were
added on z13, and uses them for code generation were appropriate.
SystemZDAGToDAGISel::tryRISBGZero is updated again to prefer LLZRGF
over RISBG where both would be possible.
llvm-svn: 286586
This adds support for the 31-to-64-bit zero extension instructions
LLGT and LLGTR and uses them for code generation where appropriate.
Since this operation can also be performed via RISBG, we have to
update SystemZDAGToDAGISel::tryRISBGZero so that we prefer LLGT
over RISBG in case both are possible. The patch includes some
simplification to the tryRISBGZero code; this is not intended
to cause any (further) functional change in codegen.
llvm-svn: 286585
Add several instructions that operate on the program mask
or the addressing mode. These are not really needed for
code generation under Linux, but are provided for completeness
for the assembler/disassembler.
llvm-svn: 286284
Add the 16 access registers as LLVM registers. This allows removing
a lot of special cases in the assembler and disassembler where we
were handling access registers; this can all just use the generic
register code now.
Also add a bunch of instructions to operate on access registers,
for assembler/disassembler use only. No change in code generation
intended.
llvm-svn: 286283