Complex component references (z%RE, z%IM) of complex named constants
should be evaluated at compilation time.
Differential Revision: https://reviews.llvm.org/D125341
Evaluate real-valued references to the intrinsic functions MODULO
and MOD at compilation time without recourse to an external math
library.
Differential Revision: https://reviews.llvm.org/D125151
Fold references to the intrinsic function DIM with constant real
arguments. And clean up folding of comparisons with NaNs to address
a problem noticed in testing -- NaNs should successfully compare
unequal to all values, including themselves, instead of failing all
comparisons.
Differential Revision: https://reviews.llvm.org/D125146
The related real number system inquiry functions SPACING()
and RRSPACING() can be folded for constant arguments.
See 16.9.164 & 16.9.180 in Fortran 2018.
Differential Revision: https://reviews.llvm.org/D125100
Transformational bessel intrinsic functions require the same math runtime
as elemental bessel intrinsics.
Currently elemental bessels could be folded if f18 was linked with pgmath
(cmake -DLIBPGMATH_DIR option). `j0`, `y0`, ... C libm functions were not
used because they are not standard C functions: they are Posix
extensions.
This patch enable:
- Using the Posix bessel host runtime functions when available.
- folding the transformational bessel using the elemental version.
Differential Revision: https://reviews.llvm.org/D124167
Adds flang/include/flang/Common/log2-visit.h, which defines
a Fortran::common::visit() template function that is a drop-in
replacement for std::visit(). Modifies most use sites in
the front-end and runtime to use common::visit().
The C++ standard mandates that std::visit() have O(1) execution
time, which forces implementations to build dispatch tables.
This new common::visit() is O(log2 N) in the number of alternatives
in a variant<>, but that N tends to be small and so this change
produces a fairly significant improvement in compiler build
memory requirements, a 5-10% improvement in compiler build time,
and a small improvement in compiler execution time.
Building with -DFLANG_USE_STD_VISIT causes common::visit()
to be an alias for std::visit().
Calls to common::visit() with multiple variant arguments
are referred to std::visit(), pending further work.
This change is enabled only for GCC builds with GCC >= 9;
an earlier attempt (D122441) ran into bugs in some versions of
clang and was reverted rather than simply disabled; and it is
not well tested with MSVC. In non-GCC and older GCC builds,
common::visit() is simply an alias for std::visit().
Implement constant folding for the intrinsic function NEAREST()
and the related functions IEEE_NEXT_AFTER(), IEEE_NEXT_UP(), and
IEEE_NEXT_DOWN().
Differential Revision: https://reviews.llvm.org/D122510
Adds flang/include/flang/Common/visit.h, which defines
a Fortran::common::visit() template function that is a drop-in
replacement for std::visit(). Modifies most use sites in
the front-end and runtime to use common::visit().
The C++ standard mandates that std::visit() have O(1) execution
time, which forces implementations to build dispatch tables.
This new common::visit() is O(log2 N) in the number of alternatives
in a variant<>, but that N tends to be small and so this change
produces a fairly significant improvement in compiler build
memory requirements, a 5-10% improvement in compiler build time,
and a small improvement in compiler execution time.
Building with -DFLANG_USE_STD_VISIT causes common::visit()
to be an alias for std::visit().
Calls to common::visit() with multiple variant arguments
are referred to std::visit(), pending further work.
Differential Revision: https://reviews.llvm.org/D122441
Using recently established message severity codes, upgrade
non-fatal messages to usage and portability warnings as
appropriate.
Differential Revision: https://reviews.llvm.org/D121246
Fold references to the intrinsic function SCALE().
(Also work around some MSVC headaches somehow exposed by
this patch: disable a bogus MSVC warning that began to appear
in unrelated source files, and avoid the otherwise-necessary
use of the "template" keyword in a call to a template member
function of a class template.)
Differential Revision: https://reviews.llvm.org/D117150
These functions were missing from the standard intrinsic module
IEEE_ARITHMETIC. IEEE_SCALB is an alias for the standard intrinsic
function SCALE(), and the others are defined as new builtin intrinsic
functions.
Differential Revision: https://reviews.llvm.org/D111253
Implement IEEE Real::SQRT() operation, then use it to
also implement Real::HYPOT(), which can then be used directly
to implement Complex::ABS().
Differential Revision: https://reviews.llvm.org/D109250
Refactor the recently-implemented MAXVAL/MINVAL folding so
that the parts that can be used to implement other reduction
transformational intrinsic function folding are exposed.
Use them to implement folding of IALL, IANY, IPARITY,
SUM. and PRODUCT. Replace the folding of ALL & ANY to
use the new infrastructure and become able to handle DIM=
arguments.
Differential Revision: https://reviews.llvm.org/D104562
Implement constant folding for the reduction transformational
intrinsic functions MAXVAL and MINVAL.
In anticipation of more folding work to follow, with (I hope)
some common infrastructure, these two have been implemented in a
new header file.
Differential Revision: https://reviews.llvm.org/D104337
- Rework the host runtime table so that it is constexpr to avoid
having to construct it and to store/propagate it.
- Make the interface simpler (remove many templates and a file)
- Enable 16bits float folding using 32bits float host runtime
- Move StaticMultimapView into its own header to use it for host
folding
Reviewed By: klausler, PeteSteinfeld
Differential Revision: https://reviews.llvm.org/D88981
This change prepares usage of lipgmath description in lowering.
- Removes the static variable templates that were used to abstract
libpgmath description
- Move the description to pgmath.h.inc header and rework the macros
so that they can both be used to declare pgmath functions and use
them.
The way they are to be used is left to pgmath.h.inc user that
must define PGMATH_USE_XX macros that will be called for all pgmath
functions in pgmath.h.inc.
- In intrinsic-library.cpp define PGMATH_USE_XX macro callbacks in
order to capture function pointers to pgmath functions as well as
a description of their type. This will be used for constant folding
using pgmath.
- Change atan/atan2 handling to use atan2 instead of atan when there are two
arguments because it is easier to handle in the runtime description.
Also fixes lipgmath linking regression after D78215 cmake changes.
This change is motivated by the need to use a similar pgmath
description in lowering. The difference is that no function pointers will
be taken there, and instead only the function name and type are needed.
Reviewed By: schweitz, sscalpone
Differential Revision: https://reviews.llvm.org/D83051
Summary:
This patch changes speficic extremum functions rewrite to generic MIN/MAX.
It applies to AMAX0, AMIN0, AMAX1, AMIN1, MAX0, MIN0, MAX1, MIN1, DMAX1,
and DMIN1.
- Do not re-write specific extremums to MAX/MIN in intrinsic Probe and let
folding rewrite it and introduc the conversion on the MIN/MAX result.
- Also make operand promotion explicit in MIN/MAX folding.
For instance, after this patch:
AMAX0(int8, int4) is rewritten to REAL(MAX(int8, INT(int4, 8)))
All this care is to avoid rewritting it to MAX(REAL(int8), REAL(int4))
that may not always be numerically equivalent to the first rewrite.
Reviewers: klausler, schweitz, sscalpone, jdoerfert, DavidTruby
Reviewed By: klausler, schweitz
Subscribers: llvm-commits, flang-commits
Tags: #flang, #llvm
Differential Revision: https://reviews.llvm.org/D81940