This reverts commit r265096, r265095, and r265094.
Windows build is broken, and the validation does not pass.
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 265102
This is intended to be used for ThinLTO incremental build.
Differential Revision: http://reviews.llvm.org/D18213
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 265095
Spiritually reapply commit r264409 (reverted in r264410), albeit with a
bit of a redesign.
Firstly, avoid splitting the big blob into multiple chunks of strings.
r264409 imposed an arbitrary limit to avoid a massive allocation on the
shared 'Record' SmallVector. The bug with that commit only reproduced
when there were more than "chunk-size" strings. A test for this would
have been useless long-term, since we're liable to adjust the chunk-size
in the future.
Thus, eliminate the motivation for chunk-ing by storing the string sizes
in the blob. Here's the layout:
vbr6: # of strings
vbr6: offset-to-blob
blob:
[vbr6]: string lengths
[char]: concatenated strings
Secondly, make the output of llvm-bcanalyzer readable.
I noticed when debugging r264409 that llvm-bcanalyzer was outputting a
massive blob all in one line. Past a small number, the strings were
impossible to split in my head, and the lines were way too long. This
version adds support in llvm-bcanalyzer for pretty-printing.
<STRINGS abbrevid=4 op0=3 op1=9/> num-strings = 3 {
'abc'
'def'
'ghi'
}
From the original commit:
Inspired by Mehdi's similar patch, http://reviews.llvm.org/D18342, this
should (a) slightly reduce bitcode size, since there is less record
overhead, and (b) greatly improve reading speed, since blobs are super
cheap to deserialize.
llvm-svn: 264551
The implementation is fairly obvious. This is preparation for using
some blobs in bitcode.
For clarity (and perhaps future-proofing?), I moved the call to
JumpToBit in BitstreamCursor::readRecord ahead of calling
MemoryObject::getPointer, since JumpToBit can theoretically (a) read
bytes, which (b) invalidates the blob pointer.
This isn't strictly necessary the two memory objects we have:
- The return of RawMemoryObject::getPointer is valid until the memory
object is destroyed.
- StreamingMemoryObject::getPointer is valid until the next chunk is
read from the stream. Since the JumpToBit call is only going ahead
to a word boundary, we'll never load another chunk.
However, reordering makes it clear by inspection that the blob returned
by BitstreamCursor::readRecord will be valid.
I added some tests for StreamingMemoryObject::getPointer and
BitstreamCursor::readRecord.
llvm-svn: 264549
Optimize output of MDStrings in bitcode. This emits them in big blocks
(currently 1024) in a pair of records:
- BULK_STRING_SIZES: the sizes of the strings in the block, and
- BULK_STRING_DATA: a single blob, which is the concatenation of all
the strings.
Inspired by Mehdi's similar patch, http://reviews.llvm.org/D18342, this
should (a) slightly reduce bitcode size, since there is less record
overhead, and (b) greatly improve reading speed, since blobs are super
cheap to deserialize.
I needed to add support for blobs to streaming input to get the test
suite passing.
- StreamingMemoryObject::getPointer reads ahead and returns the
address of the blob.
- To avoid a possible reallocation of StreamingMemoryObject::Bytes,
BitstreamCursor::readRecord needs to move the call to JumpToEnd
forward so that getPointer is the last bitstream operation.
llvm-svn: 264409
Summary: If TBAA is on an intrinsic and it gets upgraded and drops the TBAA we hit an odd assert. We should just upgrade the TBAA first because it doesn't have side-effects.
Reviewers: reames, apilipenko, manmanren
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D18229
llvm-svn: 263673
Fork off compatibility.ll for the 3.8 release. The *.bc file in this
commit was produced using a Release build of the release_38 branch.
llvm-svn: 263620
(Resubmitting after fixing missing file issue)
With the changes in r263275, there are now more than just functions in
the summary. Completed the renaming of data structures (started in
r263275) to reflect the wider scope. In particular, changed the
FunctionIndex* data structures to ModuleIndex*, and renamed related
variables and comments. Also renamed the files to reflect the changes.
A companion clang patch will immediately succeed this patch to reflect
this renaming.
llvm-svn: 263513
With the changes in r263275, there are now more than just functions in
the summary. Completed the renaming of data structures (started in
r263275) to reflect the wider scope. In particular, changed the
FunctionIndex* data structures to ModuleIndex*, and renamed related
variables and comments. Also renamed the files to reflect the changes.
A companion clang patch will immediately succeed this patch to reflect
this renaming.
llvm-svn: 263490
Summary:
This patch adds support for including a full reference graph including
call graph edges and other GV references in the summary.
The reference graph edges can be used to make importing decisions
without materializing any source modules, can be used in the plugin
to make file staging decisions for distributed build systems, and is
expected to have other uses.
The call graph edges are recorded in each function summary in the
bitcode via a list of <CalleeValueIds, StaticCount> tuples when no PGO
data exists, or <CalleeValueId, StaticCount, ProfileCount> pairs when
there is PGO, where the ValueId can be mapped to the function GUID via
the ValueSymbolTable. In the function index in memory, the call graph
edges reference the target via the CalleeGUID instead of the
CalleeValueId.
The reference graph edges are recorded in each summary record with a
list of referenced value IDs, which can be mapped to value GUID via the
ValueSymbolTable.
Addtionally, a new summary record type is added to record references
from global variable initializers. A number of bitcode records and data
structures have been renamed to reflect the newly expanded scope of the
summary beyond functions. More cleanup will follow.
Reviewers: joker.eph, davidxl
Subscribers: joker.eph, llvm-commits
Differential Revision: http://reviews.llvm.org/D17212
llvm-svn: 263275
Summary: Adds the 'avr_intrcc' and 'avr_signalcc' IR calling convention tokens to the parser.
Reviewers: arsenm
Subscribers: dylanmckay, llvm-commits
Differential Revision: http://reviews.llvm.org/D16348
llvm-svn: 262600
This restores commit r260408, along with a fix for a bot failure.
The bot failure was caused by dereferencing a unique_ptr in the same
call instruction parameter list where it was passed via std::move.
Apparently due to luck this was not exposed when I built the compiler
with clang, only with gcc.
llvm-svn: 260442
Summary:
This patch uses the lower 64-bits of the MD5 hash of a function name as
a GUID in the function index, instead of storing function names. Any
local functions are first given a global name by prepending the original
source file name. This is the same naming scheme and GUID used by PGO in
the indexed profile format.
This change has a couple of benefits. The primary benefit is size
reduction in the combined index file, for example 483.xalancbmk's
combined index file was reduced by around 70%. It should also result in
memory savings for the index file in memory, as the in-memory map is
also indexed by the hash instead of the string.
Second, this enables integration with indirect call promotion, since the
indirect call profile targets are recorded using the same global naming
convention and hash. This will enable the function importer to easily
locate function summaries for indirect call profile targets to enable
their import and subsequent promotion.
The original source file name is recorded in the bitcode in a new
module-level record for use in the ThinLTO backend pipeline.
Reviewers: davidxl, joker.eph
Subscribers: llvm-commits, joker.eph
Differential Revision: http://reviews.llvm.org/D17028
llvm-svn: 260408
Summary:
Adds the linkage type to both the per-module and combined function
summaries, which subsumes the current islocal bit. This will eventually
be used to optimized linkage types based on global summary-based
analysis.
Reviewers: joker.eph
Subscribers: joker.eph, davidxl, llvm-commits
Differential Revision: http://reviews.llvm.org/D16943
llvm-svn: 259993
This patch enables llvm-bcanalyzer to print the bitcode wrapper header
if the file has one, which is needed to test the changes made in
r258627 (bitcode-wrapper-header-armv7m.ll is the test case for r258627).
Differential Revision: http://reviews.llvm.org/D16642
llvm-svn: 259162
Summary:
Funclet EH personalities require a tree-like nesting among funclets
(enforced by the ParentPad linkage in the IR), and also require that
unwind edges conform to certain rules with respect to the tree:
- An unwind edge may exit 0 or more ancestor pads
- An unwind edge must enter exactly one EH pad, which must be distinct
from any exited pads
- A cleanupret's edge must exit its cleanuppad
Describe these rules in the LangRef, and enforce them in the verifier.
Reviewers: rnk, majnemer, andrew.w.kaylor
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D15961
llvm-svn: 257272
With r256990, bogner introduced comprehensive tests for constant arrays
and vectors. We no longer need the existing ones because they are
redundant.
llvm-svn: 256991
I added a couple of tests in r256982, but vedantk suggested that they
fit better into compatibility.ll, since they could catch format breaks
later on there.
llvm-svn: 256990
In r254991 I allowed ConstantDataVectors to contain elements of
HalfTy, but I missed updating the bitcode reader and writer to handle
this, so now we crash if we try to emit bitcode on programs that have
constant vectors of half.
This fixes the issue and adds test coverage for reading and writing
constant sequences in bitcode.
llvm-svn: 256982
Summary: A catchswitch cannot be a parent of a cleanuppad or another catchswitch.
Reviewers: rnk, andrew.w.kaylor, majnemer
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D15841
llvm-svn: 256690
Summary:
This patch introduces two new function attributes
InaccessibleMemOnly: This attribute indicates that the function may only access memory that is not accessible by the program/IR being compiled. This is a weaker form of ReadNone.
inaccessibleMemOrArgMemOnly: This attribute indicates that the function may only access memory that is either not accessible by the program/IR being compiled, or is pointed to by its pointer arguments. This is a weaker form of ArgMemOnly
Test cases have been updated. This revision uses this (d001932f3a) as reference.
Reviewers: jmolloy, hfinkel
Subscribers: reames, joker.eph, llvm-commits
Differential Revision: http://reviews.llvm.org/D15499
llvm-svn: 255778
This patch adds optional fast-math-flags (the same that apply to fmul/fadd/fsub/fdiv/frem/fcmp)
to call instructions in IR. Follow-up patches would use these flags in LibCallSimplifier, add
support to clang, and extend FMF to the DAG for calls.
Motivating example:
%y = fmul fast float %x, %x
%z = tail call float @sqrtf(float %y)
We'd like to be able to optimize sqrt(x*x) into fabs(x). We do this today using a function-wide
attribute for unsafe-math, but we really want to trigger on the instructions themselves:
%z = tail call fast float @sqrtf(float %y)
because in an LTO build it's possible that calls with fast semantics have been inlined into a
function with non-fast semantics.
The code changes and tests are based on the recent commits that added "notail":
http://reviews.llvm.org/rL252368
and added FMF to fcmp:
http://reviews.llvm.org/rL241901
Differential Revision: http://reviews.llvm.org/D14707
llvm-svn: 255555
It turns out that terminatepad gives little benefit over a cleanuppad
which calls the termination function. This is not sufficient to
implement fully generic filters but MSVC doesn't support them which
makes terminatepad a little over-designed.
Depends on D15478.
Differential Revision: http://reviews.llvm.org/D15479
llvm-svn: 255522
While we have successfully implemented a funclet-oriented EH scheme on
top of LLVM IR, our scheme has some notable deficiencies:
- catchendpad and cleanupendpad are necessary in the current design
but they are difficult to explain to others, even to seasoned LLVM
experts.
- catchendpad and cleanupendpad are optimization barriers. They cannot
be split and force all potentially throwing call-sites to be invokes.
This has a noticable effect on the quality of our code generation.
- catchpad, while similar in some aspects to invoke, is fairly awkward.
It is unsplittable, starts a funclet, and has control flow to other
funclets.
- The nesting relationship between funclets is currently a property of
control flow edges. Because of this, we are forced to carefully
analyze the flow graph to see if there might potentially exist illegal
nesting among funclets. While we have logic to clone funclets when
they are illegally nested, it would be nicer if we had a
representation which forbade them upfront.
Let's clean this up a bit by doing the following:
- Instead, make catchpad more like cleanuppad and landingpad: no control
flow, just a bunch of simple operands; catchpad would be splittable.
- Introduce catchswitch, a control flow instruction designed to model
the constraints of funclet oriented EH.
- Make funclet scoping explicit by having funclet instructions consume
the token produced by the funclet which contains them.
- Remove catchendpad and cleanupendpad. Their presence can be inferred
implicitly using coloring information.
N.B. The state numbering code for the CLR has been updated but the
veracity of it's output cannot be spoken for. An expert should take a
look to make sure the results are reasonable.
Reviewers: rnk, JosephTremoulet, andrew.w.kaylor
Differential Revision: http://reviews.llvm.org/D15139
llvm-svn: 255422
Note, this was reviewed (and more details are in) http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html
These intrinsics currently have an explicit alignment argument which is
required to be a constant integer. It represents the alignment of the
source and dest, and so must be the minimum of those.
This change allows source and dest to each have their own alignments
by using the alignment attribute on their arguments. The alignment
argument itself is removed.
There are a few places in the code for which the code needs to be
checked by an expert as to whether using only src/dest alignment is
safe. For those places, they currently take the minimum of src/dest
alignments which matches the current behaviour.
For example, code which used to read:
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dest, i8* %src, i32 500, i32 8, i1 false)
will now read:
call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 8 %dest, i8* align 8 %src, i32 500, i1 false)
For out of tree owners, I was able to strip alignment from calls using sed by replacing:
(call.*llvm\.memset.*)i32\ [0-9]*\,\ i1 false\)
with:
$1i1 false)
and similarly for memmove and memcpy.
I then added back in alignment to test cases which needed it.
A similar commit will be made to clang which actually has many differences in alignment as now
IRBuilder can generate different source/dest alignments on calls.
In IRBuilder itself, a new argument was added. Instead of calling:
CreateMemCpy(Dst, Src, getInt64(Size), DstAlign, /* isVolatile */ false)
you now call
CreateMemCpy(Dst, Src, getInt64(Size), DstAlign, SrcAlign, /* isVolatile */ false)
There is a temporary class (IntegerAlignment) which takes the source alignment and rejects
implicit conversion from bool. This is to prevent isVolatile here from passing its default
parameter to the source alignment.
Note, changes in future can now be made to codegen. I didn't change anything here, but this
change should enable better memcpy code sequences.
Reviewed by Hal Finkel.
llvm-svn: 253511
This marker prevents optimization passes from adding 'tail' or
'musttail' markers to a call. Is is used to prevent tail call
optimization from being performed on the call.
rdar://problem/22667622
Differential Revision: http://reviews.llvm.org/D12923
llvm-svn: 252368
This attribute allows the compiler to assume that the function never recurses into itself, either directly or indirectly (transitively). This can be used among other things to demote global variables to locals.
llvm-svn: 252282
Previously, subprograms contained a metadata reference to the function they
described. Because most clients need to get or set a subprogram for a given
function rather than the other way around, this created unneeded inefficiency.
For example, many passes needed to call the function llvm::makeSubprogramMap()
to build a mapping from functions to subprograms, and the IR linker needed to
fix up function references in a way that caused quadratic complexity in the IR
linking phase of LTO.
This change reverses the direction of the edge by storing the subprogram as
function-level metadata and removing DISubprogram's function field.
Since this is an IR change, a bitcode upgrade has been provided.
Fixes PR23367. An upgrade script for textual IR for out-of-tree clients is
attached to the PR.
Differential Revision: http://reviews.llvm.org/D14265
llvm-svn: 252219
We used automated tools to update our IR to its current syntax in commit
21f77df7(r247378). While it correctly updated the CHECK lines in our
compatibility tests, the IR should have remained untouched. This commit
fixes the syntax errors.
llvm-svn: 251458
Use 10 bits to represent calling convention ID's instead of 13, and
update the bitcode compatibility tests accordingly. We now error-out in
the bitcode reader when we see bad calling conv ID's.
Thanks to rnk and dexonsmith for feedback!
Differential Revision: http://reviews.llvm.org/D13826
llvm-svn: 251452
Processing bitcode from a different LLVM version can lead to
unexpected behavior. The LLVM project guarantees autoupdating
bitcode from a previous minor revision for the same major, but
can't make any promise when reading bitcode generated from a
either a non-released LLVM, a vendor toolchain, or a "future"
LLVM release. This patch aims at being more user-friendly and
allows a bitcode produce to emit an optional block at the
beginning of the bitcode that will contains an opaque string
intended to describe the bitcode producer information. The
bitcode reader will dump this information alongside any error it
reports.
The optional block also includes an "epoch" number, monotonically
increasing when incompatible changes are made to the bitcode. The
reader will reject bitcode whose epoch is different from the one
expected.
Differential Revision: http://reviews.llvm.org/D13666
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 251325
Summary:
The change to use the VST function entries for lazy deserialization did
not handle the case of anonymous functions without aliases. In that case
we must fall back to scanning the function blocks as there is no VST
entry.
Reviewers: dexonsmith, joker.eph, davidxl
Subscribers: tstellarAMD, llvm-commits
Differential Revision: http://reviews.llvm.org/D13596
llvm-svn: 249947
Summary:
The bitcode format is described in this document:
https://drive.google.com/file/d/0B036uwnWM6RWdnBLakxmeDdOeXc/view
For more info on ThinLTO see:
https://sites.google.com/site/llvmthinlto
The first customer is ThinLTO, however the data structures are designed
and named more generally based on prior feedback. There are a few
comments regarding how certain interfaces are used by ThinLTO, and the
options added here to gold currently have ThinLTO-specific names as the
behavior they provoke is currently ThinLTO-specific.
This patch includes support for generating per-module function indexes,
the combined index file via the gold plugin, and several tests
(more are included with the associated clang patch D11908).
Reviewers: dexonsmith, davidxl, joker.eph
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D13107
llvm-svn: 249270
Summary:
This also adds the first set of tests for operand bundles.
The optimizer has not been audited to ensure that it does the right
thing with operand bundles.
Depends on D12456.
Reviewers: reames, chandlerc, majnemer, dexonsmith, kmod, JosephTremoulet, rnk, bogner
Subscribers: maksfb, llvm-commits
Differential Revision: http://reviews.llvm.org/D12457
llvm-svn: 248551
This reverts commit r247898 (which reverted r247894).
Patch fixed to address two issues exposed by buildbots:
- unused variable warning in NDEBUG mode
- std::initializer_list lifetime issue causing test failures
Original Summary:
Support for including the function bitcode indices in the Value Symbol
Table. This requires writing the VST after the function blocks, which in
turn requires a new VST forward declaration record encoding the offset of
the full VST (which is backpatched to contain the offset after the VST
is written).
This patch also enables the lazy function reader to use the new function
indices out of the VST. This support will be used by ThinLTO as well, which
will be in a follow on patch. Backwards compatibility with older bitcode
files is maintained.
A new test is also included.
The bitcode format (used for the lazy reader as well as the upcoming
ThinLTO patches) came out of discussions with Duncan and others and is
described here:
https://drive.google.com/file/d/0B036uwnWM6RWdnBLakxmeDdOeXc/view
Reviewers: dexonsmith, davidxl, joker.eph
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D12536
llvm-svn: 247927
Temporarily revert to fix some buildbot issues. One is a minor issue
with a variable unused in NDEBUG mode. More concerning are some test
failures on win7 that I need to dig into.
This reverts commit 4e66a74543459832cfd571db42b4543580ae1d1d.
llvm-svn: 247898
Summary:
Support for including the function bitcode indices in the Value Symbol
Table. This requires writing the VST after the function blocks, which in
turn requires a new VST forward declaration record encoding the offset of
the full VST (which is backpatched to contain the offset after the VST
is written).
This patch also enables the lazy function reader to use the new function
indices out of the VST. This support will be used by ThinLTO as well, which
will be in a follow on patch. Backwards compatibility with older bitcode
files is maintained.
A new test is also included.
The bitcode format (used for the lazy reader as well as the upcoming
ThinLTO patches) came out of discussions with Duncan and others and is
described here:
https://drive.google.com/file/d/0B036uwnWM6RWdnBLakxmeDdOeXc/view
Reviewers: dexonsmith, davidxl, joker.eph
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D12536
llvm-svn: 247894
The rest of the EH pads are fine, since they have at most one label and
take fewer operands for the personality.
Old catchpad vs. new:
%5 = catchpad [i8* bitcast (i32 ()* @"\01?filt$0@0@main@@" to i8*)] to label %__except.ret.10 unwind label %catchendblock.9
-----
%5 = catchpad [i8* bitcast (i32 ()* @"\01?filt$0@0@main@@" to i8*)]
to label %__except.ret.10 unwind label %catchendblock.9
llvm-svn: 247433
This test stresses verify-uselistorder. PR24755 is caused by our
ignoring uses when they occur in the function personality slot, the
prologue data slot, or the prefix data slot.
llvm-svn: 247292
Summary:
Constant vectors weren't allowed to have an i1 condition in the
BitcodeReader. Make sure we have the same restrictions that are
documented, not more.
Reviewers: nlewycky, rafael, kschimpf
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D12440
llvm-svn: 246459
As a follow-up to r246098, require `DISubprogram` definitions
(`isDefinition: true`) to be 'distinct'. Specifically, add an assembler
check, a verifier check, and bitcode upgrading logic to combat testcase
bitrot after the `DIBuilder` change.
While working on the testcases, I realized that
test/Linker/subprogram-linkonce-weak-odr.ll isn't relevant anymore. Its
purpose was to check for a corner case in PR22792 where two subprogram
definitions match exactly and share the same metadata node. The new
verifier check, requiring that subprogram definitions are 'distinct',
precludes that possibility.
I updated almost all the IR with the following script:
git grep -l -E -e '= !DISubprogram\(.* isDefinition: true' |
grep -v test/Bitcode |
xargs sed -i '' -e 's/= \(!DISubprogram(.*, isDefinition: true\)/= distinct \1/'
Likely some variant of would work for out-of-tree testcases.
llvm-svn: 246327
This introduces the basic functionality to support "token types".
The motivation stems from the need to perform operations on a Value
whose provenance cannot be obscured.
There are several applications for such a type but my immediate
motivation stems from WinEH. Our personality routine enforces a
single-entry - single-exit regime for cleanups. After several rounds of
optimizations, we may be left with a terminator whose "cleanup-entry
block" is not entirely clear because control flow has merged two
cleanups together. We have experimented with using labels as operands
inside of instructions which are not terminators to indicate where we
came from but found that LLVM does not expect such exotic uses of
BasicBlocks.
Instead, we can use this new type to clearly associate the "entry point"
and "exit point" of our cleanup. This is done by having the cleanuppad
yield a Token and consuming it at the cleanupret.
The token type makes it impossible to obscure or otherwise hide the
Value, making it trivial to track the relationship between the two
points.
What is the burden to the optimizer? Well, it turns out we have already
paid down this cost by accepting that there are certain calls that we
are not permitted to duplicate, optimizations have to watch out for
such instructions anyway. There are additional places in the optimizer
that we will probably have to update but early examination has given me
the impression that this will not be heroic.
Differential Revision: http://reviews.llvm.org/D11861
llvm-svn: 245029
This fixes a bug found while working on the bitcode reader. In
particular, the method BitstreamReader::AtEndOfStream doesn't always
behave correctly when processing a data streamer. The method
fillCurWord doesn't properly set CurWord/BitsInCurWord if the data
streamer was already at eof, but GetBytes had not yet set the
ObjectSize field of the streaming memory object.
This patch fixes this problem, and provides a test to show that
this problem has been fixed.
Patch by Karl Schimpf.
Differential Revision: http://reviews.llvm.org/D11391
llvm-svn: 243890
Since r241097, `DIBuilder` has only created distinct `DICompileUnit`s.
The backend is liable to start relying on that (if it hasn't already),
so make uniquable `DICompileUnit`s illegal and automatically upgrade old
bitcode. This is a nice cleanup, since we can remove an unnecessary
`DenseSet` (and the associated uniquing info) from `LLVMContextImpl`.
Almost all the testcases were updated with this script:
git grep -e '= !DICompileUnit' -l -- test |
grep -v test/Bitcode |
xargs sed -i '' -e 's,= !DICompileUnit,= distinct !DICompileUnit,'
I imagine something similar should work for out-of-tree testcases.
llvm-svn: 243885
* generate function with string attribute using API,
* dump it in LL format,
* try to parse.
Add parser support for string attributes to fix the issue.
Reviewed By: reames, hfinkel
Differential Revision: http://reviews.llvm.org/D11058
llvm-svn: 243877
Successive versions of LLVM should retain the ability to parse bitcode
generated by old releases of the compiler. This adds a bitcode format
compatibility test, which is intended to provide good (albeit not
entirely exhaustive) coverage of the current LangRef.
This also includes compatibility tests for LLVM 3.6. After every 3.X.0
release, the compatibility.ll file from the 3.X branch should be copied
to compatibility-3.X.ll on trunk, and the 3.X.0 release used to generate
a corresponding bitcode file.
Patch by Vedant Kumar!
llvm-svn: 243779
Remove the fake `DW_TAG_auto_variable` and `DW_TAG_arg_variable` tags,
using `DW_TAG_variable` in their place Stop exposing the `tag:` field at
all in the assembly format for `DILocalVariable`.
Most of the testcase updates were generated by the following sed script:
find test/ -name "*.ll" -o -name "*.mir" |
xargs grep -l 'DILocalVariable' |
xargs sed -i '' \
-e 's/tag: DW_TAG_arg_variable, //' \
-e 's/tag: DW_TAG_auto_variable, //'
There were only a handful of tests in `test/Assembly` that I needed to
update by hand.
(Note: a follow-up could change `DILocalVariable::DILocalVariable()` to
set the tag to `DW_TAG_formal_parameter` instead of `DW_TAG_variable`
(as appropriate), instead of having that logic magically in the backend
in `DbgVariable`. I've added a FIXME to that effect.)
llvm-svn: 243774
This change adds new attribute called "argmemonly". Function marked with this attribute can only access memory through it's argument pointers. This attribute directly corresponds to the "OnlyAccessesArgumentPointees" ModRef behaviour in alias analysis.
Differential Revision: http://reviews.llvm.org/D10398
llvm-svn: 241979
FCmp behaves a lot like a floating-point binary operator in many ways,
and can benefit from fast-math information. Flags such as nsz and nnan
can affect if this fcmp (in combination with a select) can be treated
as a fminnum/fmaxnum operation.
This adds backwards-compatible bitcode support, IR parsing and writing,
LangRef changes and IRBuilder changes. I'll need to audit InstSimplify
and InstCombine in a followup to find places where flags should be
copied.
llvm-svn: 241901
When trying to upgrade @llvm.x86.sse2.psrl.dq while parsing a module,
BitcodeReader adds the function to its worklist twice, resulting in a
crash when accessing it the second time.
This patch replaces the worklist vector by a map.
Patch by Philip Pfaffe.
llvm-svn: 241281
The personality routine currently lives in the LandingPadInst.
This isn't desirable because:
- All LandingPadInsts in the same function must have the same
personality routine. This means that each LandingPadInst beyond the
first has an operand which produces no additional information.
- There is ongoing work to introduce EH IR constructs other than
LandingPadInst. Moving the personality routine off of any one
particular Instruction and onto the parent function seems a lot better
than have N different places a personality function can sneak onto an
exceptional function.
Differential Revision: http://reviews.llvm.org/D10429
llvm-svn: 239940
Before this patch the bitcode reader would read a module from a file
that contained in order:
* Any number of non MODULE_BLOCK sub blocks.
* One MODULE_BLOCK
* Any number of non MODULE_BLOCK sub blocks.
* 4 '\n' characters to handle OS X's ranlib.
Since we support lazy reading of modules, any information that is relevant
for the module has to be in the MODULE_BLOCK or before it. We don't gain
anything from checking what is after.
This patch then changes the reader to stop once the MODULE_BLOCK has been
successfully parsed.
This avoids the ugly special case for .bc files in an archive and makes it
easier to embed bitcode files.
llvm-svn: 239845
Source for the test:
@bloom = global <3 x i32> <i32 0, i32 1, i32 42>
Plus bit twiddling to set the vector numelts to 0 (in the bc file).
llvm-svn: 238894
so DWARF skeleton CUs can be expression in IR. A skeleton CU is a
(typically empty) DW_TAG_compile_unit that has a DW_AT_(GNU)_dwo_name and
a DW_AT_(GNU)_dwo_id attribute. It is used to refer to external debug info.
This is a prerequisite for clang module debugging as discussed in
http://lists.cs.uiuc.edu/pipermail/cfe-dev/2014-November/040076.html.
In order to refer to external types stored in split DWARF (dwo) objects,
such as clang modules, we need to emit skeleton CUs, which identify the
dwarf object (i.e., the clang module) by filename (the SplitDebugFilename)
and a hash value, the dwo_id.
This patch only contains the IR changes. The idea is that a CUs with a
non-zero dwo_id field will be emitted together with a DW_AT_GNU_dwo_name
and DW_AT_GNU_dwo_id attribute.
http://reviews.llvm.org/D9488
rdar://problem/20091852
llvm-svn: 237949
Summary:
Also tagged a FIXME comment, and added information about why it breaks.
Bug found using AFL fuzz.
Reviewers: rafael, craig.topper
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D9729
llvm-svn: 237709
Summary:
Added isLoadableOrStorableType to PointerType.
We were doing some checks in some places, occasionally assert()ing instead
of telling the caller. With this patch, I'm putting all type checking in
the same place for load/store type instructions, and verifying the same
thing every time.
I also added a check for load/store of a function type.
Applied extracted check to Load, Store, and Cmpxcg.
I don't have exhaustive tests for all of these, but all Error() calls in
TypeCheckLoadStoreInst are being tested (in invalid.test).
Reviewers: dblaikie, rafael
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D9785
llvm-svn: 237619
Somehow I dropped this in r233585, and we haven't had `DEBUG_LOC_AGAIN`
records since. Add it back. Also tests that the output assembly looks
okay.
Fixes PR23436.
llvm-svn: 236661
Summary:
We don't seem to need to assert here, since this function's callers expect
to get a nullptr on error. This way we don't assert on user input.
Bug found with AFL fuzz.
Reviewers: rafael
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D9308
llvm-svn: 236027
As a space optimization, this instruction would just encode the pointer
type of the first operand and use the knowledge that the second and
third operands would be of the pointee type of the first. When typed
pointers go away, this assumption will no longer be available - so
encode the type of the second operand explicitly and rely on that for
the third.
Test case added to demonstrate the backwards compatibility concern,
which only comes up when the definition of the second operand comes
after the use (hence the weird basic block sequence) - at which point
the type needs to be explicitly encoded in the bitcode and the record
length changes to accommodate this.
llvm-svn: 235966
Summary:
Make sure the abbrev operands are valid and that we can read/skip them
afterwards.
Bug found with AFL fuzz.
Reviewers: rafael
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D9030
llvm-svn: 235595
Use an extra bit in the CCInfo to flag the newer version of the
instructiont hat includes the type explicitly.
Tested the newer error cases I added, but didn't add tests for the finer
granularity improvements to existing error paths.
llvm-svn: 235160
See r230786 and r230794 for similar changes to gep and load
respectively.
Call is a bit different because it often doesn't have a single explicit
type - usually the type is deduced from the arguments, and just the
return type is explicit. In those cases there's no need to change the
IR.
When that's not the case, the IR usually contains the pointer type of
the first operand - but since typed pointers are going away, that
representation is insufficient so I'm just stripping the "pointerness"
of the explicit type away.
This does make the IR a bit weird - it /sort of/ reads like the type of
the first operand: "call void () %x(" but %x is actually of type "void
()*" and will eventually be just of type "ptr". But this seems not too
bad and I don't think it would benefit from repeating the type
("void (), void () * %x(" and then eventually "void (), ptr %x(") as has
been done with gep and load.
This also has a side benefit: since the explicit type is no longer a
pointer, there's no ambiguity between an explicit type and a function
that returns a function pointer. Previously this case needed an explicit
type (eg: a function returning a void() function was written as
"call void () () * @x(" rather than "call void () * @x(" because of the
ambiguity between a function returning a pointer to a void() function
and a function returning void).
No ambiguity means even function pointer return types can just be
written alone, without writing the whole function's type.
This leaves /only/ the varargs case where the explicit type is required.
Given the special type syntax in call instructions, the regex-fu used
for migration was a bit more involved in its own unique way (as every
one of these is) so here it is. Use it in conjunction with the apply.sh
script and associated find/xargs commands I've provided in rr230786 to
migrate your out of tree tests. Do let me know if any of this doesn't
cover your cases & we can iterate on a more general script/regexes to
help others with out of tree tests.
About 9 test cases couldn't be automatically migrated - half of those
were functions returning function pointers, where I just had to manually
delete the function argument types now that we didn't need an explicit
function type there. The other half were typedefs of function types used
in calls - just had to manually drop the * from those.
import fileinput
import sys
import re
pat = re.compile(r'((?:=|:|^|\s)call\s(?:[^@]*?))(\s*$|\s*(?:(?:\[\[[a-zA-Z0-9_]+\]\]|[@%](?:(")?[\\\?@a-zA-Z0-9_.]*?(?(3)"|)|{{.*}}))(?:\(|$)|undef|inttoptr|bitcast|null|asm).*$)')
addrspace_end = re.compile(r"addrspace\(\d+\)\s*\*$")
func_end = re.compile("(?:void.*|\)\s*)\*$")
def conv(match, line):
if not match or re.search(addrspace_end, match.group(1)) or not re.search(func_end, match.group(1)):
return line
return line[:match.start()] + match.group(1)[:match.group(1).rfind('*')].rstrip() + match.group(2) + line[match.end():]
for line in sys.stdin:
sys.stdout.write(conv(re.search(pat, line), line))
llvm-svn: 235145
Summary:
If a pointer is marked as dereferenceable_or_null(N), LLVM assumes it
is either `null` or `dereferenceable(N)` or both. This change only
introduces the attribute and adds a token test case for the `llvm-as`
/ `llvm-dis`. It does not hook up other parts of the optimizer to
actually exploit the attribute -- those changes will come later.
For pointers in address space 0, `dereferenceable(N)` is now exactly
equivalent to `dereferenceable_or_null(N)` && `nonnull`. For other
address spaces, `dereferenceable(N)` is potentially weaker than
`dereferenceable_or_null(N)` && `nonnull` (since we could have a null
`dereferenceable(N)` pointer).
The motivating case for this change is Java (and other managed
languages), where pointers are either `null` or dereferenceable up to
some usually known-at-compile-time constant offset.
Reviewers: rafael, hfinkel
Reviewed By: hfinkel
Subscribers: nicholas, llvm-commits
Differential Revision: http://reviews.llvm.org/D8650
llvm-svn: 235132
Summary:
Without this check the following case failed:
Skip a SubBlock which is not a MODULE_BLOCK_ID nor a BLOCKINFO_BLOCK_ID
Got to end of file
TheModule would still be == nullptr, and we would subsequentially fail
when materializing the Module (assert at the start of
BitcodeReader::MaterializeModule).
Bug found with AFL.
Reviewers: dexonsmith, rafael
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D9014
llvm-svn: 234887
(turns out I had regressed this when sinking handling of this type down
into GetElementPtrInst::Create - since that asserted before the error
handling was performed)
llvm-svn: 232420
Similar to gep (r230786) and load (r230794) changes.
Similar migration script can be used to update test cases, which
successfully migrated all of LLVM and Polly, but about 4 test cases
needed manually changes in Clang.
(this script will read the contents of stdin and massage it into stdout
- wrap it in the 'apply.sh' script shown in previous commits + xargs to
apply it over a large set of test cases)
import fileinput
import sys
import re
rep = re.compile(r"(getelementptr(?:\s+inbounds)?\s*\()((<\d*\s+x\s+)?([^@]*?)(|\s*addrspace\(\d+\))\s*\*(?(3)>)\s*)(?=$|%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|zeroinitializer|<|\[\[[a-zA-Z]|\{\{)", re.MULTILINE | re.DOTALL)
def conv(match):
line = match.group(1)
line += match.group(4)
line += ", "
line += match.group(2)
return line
line = sys.stdin.read()
off = 0
for match in re.finditer(rep, line):
sys.stdout.write(line[off:match.start()])
sys.stdout.write(conv(match))
off = match.end()
sys.stdout.write(line[off:])
llvm-svn: 232184
Summary:
DataLayout keeps the string used for its creation.
As a side effect it is no longer needed in the Module.
This is "almost" NFC, the string is no longer
canonicalized, you can't rely on two "equals" DataLayout
having the same string returned by getStringRepresentation().
Get rid of DataLayoutPass: the DataLayout is in the Module
The DataLayout is "per-module", let's enforce this by not
duplicating it more than necessary.
One more step toward non-optionality of the DataLayout in the
module.
Make DataLayout Non-Optional in the Module
Module->getDataLayout() will never returns nullptr anymore.
Reviewers: echristo
Subscribers: resistor, llvm-commits, jholewinski
Differential Revision: http://reviews.llvm.org/D7992
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 231270
Essentially the same as the GEP change in r230786.
A similar migration script can be used to update test cases, though a few more
test case improvements/changes were required this time around: (r229269-r229278)
import fileinput
import sys
import re
pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)")
for line in sys.stdin:
sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line))
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7649
llvm-svn: 230794
One of several parallel first steps to remove the target type of pointers,
replacing them with a single opaque pointer type.
This adds an explicit type parameter to the gep instruction so that when the
first parameter becomes an opaque pointer type, the type to gep through is
still available to the instructions.
* This doesn't modify gep operators, only instructions (operators will be
handled separately)
* Textual IR changes only. Bitcode (including upgrade) and changing the
in-memory representation will be in separate changes.
* geps of vectors are transformed as:
getelementptr <4 x float*> %x, ...
->getelementptr float, <4 x float*> %x, ...
Then, once the opaque pointer type is introduced, this will ultimately look
like:
getelementptr float, <4 x ptr> %x
with the unambiguous interpretation that it is a vector of pointers to float.
* address spaces remain on the pointer, not the type:
getelementptr float addrspace(1)* %x
->getelementptr float, float addrspace(1)* %x
Then, eventually:
getelementptr float, ptr addrspace(1) %x
Importantly, the massive amount of test case churn has been automated by
same crappy python code. I had to manually update a few test cases that
wouldn't fit the script's model (r228970,r229196,r229197,r229198). The
python script just massages stdin and writes the result to stdout, I
then wrapped that in a shell script to handle replacing files, then
using the usual find+xargs to migrate all the files.
update.py:
import fileinput
import sys
import re
ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
def conv(match, line):
if not match:
return line
line = match.groups()[0]
if len(match.groups()[5]) == 0:
line += match.groups()[2]
line += match.groups()[3]
line += ", "
line += match.groups()[1]
line += "\n"
return line
for line in sys.stdin:
if line.find("getelementptr ") == line.find("getelementptr inbounds"):
if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("):
line = conv(re.match(ibrep, line), line)
elif line.find("getelementptr ") != line.find("getelementptr ("):
line = conv(re.match(normrep, line), line)
sys.stdout.write(line)
apply.sh:
for name in "$@"
do
python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name"
rm -f "$name.tmp"
done
The actual commands:
From llvm/src:
find test/ -name *.ll | xargs ./apply.sh
From llvm/src/tools/clang:
find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}"
From llvm/src/tools/polly:
find test/ -name *.ll | xargs ./apply.sh
After that, check-all (with llvm, clang, clang-tools-extra, lld,
compiler-rt, and polly all checked out).
The extra 'rm' in the apply.sh script is due to a few files in clang's test
suite using interesting unicode stuff that my python script was throwing
exceptions on. None of those files needed to be migrated, so it seemed
sufficient to ignore those cases.
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7636
llvm-svn: 230786
Since r199356, we've printed a warning when dropping debug info.
r225562 started crashing on that, since it registered a diagnostic
handler that only expected errors. This fixes the handler to expect
other severities. As a side effect, it now prints "error: " at the
start of error messages, similar to `llvm-as`.
There was a testcase for r199356, but it only really checked the
assembler. Move `test/Bitcode/drop-debug-info.ll` to `test/Assembler`,
and introduce `test/Bitcode/drop-debug-info.3.5.ll` (and companion
`.bc`) to test the bitcode reader.
Note: tools/gold/gold-plugin.cpp has an equivalent bug, but I'm not sure
what the best fix is there. I'll file a PR.
llvm-svn: 230416
Like r230414, add bitcode support including backwards compatibility, for
an explicit type parameter to GEP.
At the suggestion of Duncan I tried coalescing the two older bitcodes into a
single new bitcode, though I did hit a wrinkle: I couldn't figure out how to
create an explicit abbreviation for a record with a variable number of
arguments (the indicies to the gep). This means the discriminator between
inbounds and non-inbounds gep is a full variable-length field I believe? Is my
understanding correct? Is there a way to create such an abbreviation? Should I
just use two bitcodes as before?
Reviewers: dexonsmith
Differential Revision: http://reviews.llvm.org/D7736
llvm-svn: 230415
While fuzzing LLVM bitcode files, I discovered that (1) the bitcode reader doesn't check that alignments are no larger than 2**29; (2) downstream code doesn't check the range; and (3) for values out of range, corresponding large memory requests (based on alignment size) will fail. This code fixes the bitcode reader to check for valid alignments, fixing this problem.
This CL fixes alignment value on global variables, functions, and instructions: alloca, load, load atomic, store, store atomic.
Patch by Karl Schimpf (kschimpf@google.com).
llvm-svn: 230180
Summary:
When creating {insert,extract}value instructions from a BitcodeReader, we
weren't verifying the fields were valid.
Bugs found with afl-fuzz
Reviewers: rafael
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D7325
llvm-svn: 229345
Eventually we can make some of these pass the error along to the caller.
Reports a fatal error if:
We find an invalid abbrev record
We try to get an invalid abbrev number
We can't fill the current word due to an EOF
Fixed an invalid bitcode test to check for output with FileCheck
Bugs found with afl-fuzz
llvm-svn: 226986
No change in this commit, but clang was changed to also produce trivial comdats when
needed.
Original message:
Don't create new comdats in CodeGen.
This patch stops the implicit creation of comdats during codegen.
Clang now sets the comdat explicitly when it is required. With this patch clang and gcc
now produce the same result in pr19848.
llvm-svn: 226467
This reverts commit r226173, adding r226038 back.
No change in this commit, but clang was changed to also produce trivial comdats for
costructors, destructors and vtables when needed.
Original message:
Don't create new comdats in CodeGen.
This patch stops the implicit creation of comdats during codegen.
Clang now sets the comdat explicitly when it is required. With this patch clang and gcc
now produce the same result in pr19848.
llvm-svn: 226242
This commit moves `MDLocation`, finishing off PR21433. There's an
accompanying clang commit for frontend testcases. I'll attach the
testcase upgrade script I used to PR21433 to help out-of-tree
frontends/backends.
This changes the schema for `DebugLoc` and `DILocation` from:
!{i32 3, i32 7, !7, !8}
to:
!MDLocation(line: 3, column: 7, scope: !7, inlinedAt: !8)
Note that empty fields (line/column: 0 and inlinedAt: null) don't get
printed by the assembly writer.
llvm-svn: 226048
This patch stops the implicit creation of comdats during codegen.
Clang now sets the comdat explicitly when it is required. With this patch clang and gcc
now produce the same result in pr19848.
llvm-svn: 226038
The bitcode reading interface used std::error_code to report an error to the
callers and it is the callers job to print diagnostics.
This is not ideal for error handling or diagnostic reporting:
* For error handling, all that the callers care about is 3 possibilities:
* It worked
* The bitcode file is corrupted/invalid.
* The file is not bitcode at all.
* For diagnostic, it is user friendly to include far more information
about the invalid case so the user can find out what is wrong with the
bitcode file. This comes up, for example, when a developer introduces a
bug while extending the format.
The compromise we had was to have a lot of error codes.
With this patch we use the DiagnosticHandler to communicate with the
human and std::error_code to communicate with the caller.
This allows us to have far fewer error codes and adds the infrastructure to
print better diagnostics. This is so because the diagnostics are printed when
he issue is found. The code that detected the problem in alive in the stack and
can pass down as much context as needed. As an example the patch updates
test/Bitcode/invalid.ll.
Using a DiagnosticHandler also moves the fatal/non-fatal error decision to the
caller. A simple one like llvm-dis can just use fatal errors. The gold plugin
needs a bit more complex treatment because of being passed non-bitcode files. An
hypothetical interactive tool would make all bitcode errors non-fatal.
llvm-svn: 225562
Now that `Metadata` is typeless, reflect that in the assembly. These
are the matching assembly changes for the metadata/value split in
r223802.
- Only use the `metadata` type when referencing metadata from a call
intrinsic -- i.e., only when it's used as a `Value`.
- Stop pretending that `ValueAsMetadata` is wrapped in an `MDNode`
when referencing it from call intrinsics.
So, assembly like this:
define @foo(i32 %v) {
call void @llvm.foo(metadata !{i32 %v}, metadata !0)
call void @llvm.foo(metadata !{i32 7}, metadata !0)
call void @llvm.foo(metadata !1, metadata !0)
call void @llvm.foo(metadata !3, metadata !0)
call void @llvm.foo(metadata !{metadata !3}, metadata !0)
ret void, !bar !2
}
!0 = metadata !{metadata !2}
!1 = metadata !{i32* @global}
!2 = metadata !{metadata !3}
!3 = metadata !{}
turns into this:
define @foo(i32 %v) {
call void @llvm.foo(metadata i32 %v, metadata !0)
call void @llvm.foo(metadata i32 7, metadata !0)
call void @llvm.foo(metadata i32* @global, metadata !0)
call void @llvm.foo(metadata !3, metadata !0)
call void @llvm.foo(metadata !{!3}, metadata !0)
ret void, !bar !2
}
!0 = !{!2}
!1 = !{i32* @global}
!2 = !{!3}
!3 = !{}
I wrote an upgrade script that handled almost all of the tests in llvm
and many of the tests in cfe (even handling many `CHECK` lines). I've
attached it (or will attach it in a moment if you're speedy) to PR21532
to help everyone update their out-of-tree testcases.
This is part of PR21532.
llvm-svn: 224257
`MDString`s can have arbitrary characters in them. Prevent an assertion
that fired in `BitcodeWriter` because of sign extension by copying the
characters into the record as `unsigned char`s.
Based on a patch by Keno Fischer; fixes PR21882.
llvm-svn: 224077
This reflects the typelessness of `Metadata` in the bitcode format,
removing types from all metadata operands.
`METADATA_VALUE` represents a `ValueAsMetadata`, and always has two
fields: the type and the value.
`METADATA_NODE` represents an `MDNode`, and unlike `METADATA_OLD_NODE`,
doesn't store types. It stores operands at their ID+1 so that `0` can
reference `nullptr` operands.
Part of PR21532.
llvm-svn: 224073
As a fixup to r223616, follow the convention of naming the files after
the LLVM release whose bitcode they're maintaining compatability with.
llvm-svn: 223623
Add assembly and bitcode tests that I neglected to add in r223564 (IR:
Disallow complicated function-local metadata) and r223574 (IR: Disallow
function-local metadata attachments).
Found a couple of bugs:
- The error message for function-local attachments gave the wrong line
number -- it indicated the next token (typically on the next line)
instead of the token that started the attachment. Fixed.
- Metadata arguments of the form `!{i32 0, i32 %v}` (or with the
arguments reversed) fired an assertion in `ValueEnumerator` in LLVM
v3.5, so I suppose this never really worked. I suppose this was
"fixed" by r223564.
(Thanks to dblaikie for pointing out my omission.)
Part of PR21532.
llvm-svn: 223616
This reverts commit r218918, effectively reapplying r218914 after fixing
an Ocaml bindings test and an Asan crash. The root cause of the latter
was a tightened-up check in `DILexicalBlock::Verify()`, so I'll file a
PR to investigate who requires the loose check (and why).
Original commit message follows.
--
This patch addresses the first stage of PR17891 by folding constant
arguments together into a single MDString. Integers are stringified and
a `\0` character is used as a separator.
Part of PR17891.
Note: I've attached my testcases upgrade scripts to the PR. If I've
just broken your out-of-tree testcases, they might help.
llvm-svn: 219010
This patch addresses the first stage of PR17891 by folding constant
arguments together into a single MDString. Integers are stringified and
a `\0` character is used as a separator.
Part of PR17891.
Note: I've attached my testcases upgrade scripts to the PR. If I've
just broken your out-of-tree testcases, they might help.
llvm-svn: 218914
This includes constants, attributes, and some additional instructions not covered by previous tests.
Work was done by lama.saba@intel.com.
llvm-svn: 218297
This allows streams that only use BLOCKINFO for debugging purposes to omit
the block entirely. As long as another stream is available with the correct
BLOCKINFO, the first stream can still be analyzed and dumped.
As part of this commit, BitstreamReader gets a move constructor and move
assignment operator, as well as a takeBlockInfo method.
llvm-svn: 216826
Call `verifyModule()` after parsing and after every transformation.
Also convert some `DEBUG(dbgs())` to `errs()` to increase visibility
into what's going on.
llvm-svn: 215951
Block address forward-references are implemented by creating a
`BasicBlock` ahead of time that gets inserted in the `Function` when
it's eventually encountered.
However, if the same blockaddress was used in two separate functions
that were parsed *before* the referenced function (and the blockaddress
was never used at global scope), two separate basic blocks would get
created, one of which would be forgotten creating invalid IR.
This commit changes the forward-reference logic to create only one basic
block (and always return the same blockaddress).
llvm-svn: 215805
An optional third field was added to `llvm.global_ctors` (and
`llvm.global_dtors`) in r209015. Most of the code has been changed to
deal with both versions of the variables. Users of the C API might
create either version, the helper functions in LLVM create the two-field
version, and clang now creates the three-field version.
However, the BitcodeReader was changed to always upgrade to the
three-field version. This created an unnecessary inconsistency in the
IR before/after serializing to bitcode.
This commit resolves the inconsistency by making the third field truly
optional (and not upgrading in the bitcode reader). Since `llvm-link`
was relying on this upgrade code, rather than deleting it I've moved it
into `ModuleLinker`, where it upgrades these arrays as necessary to
resolve inconsistencies between modules.
The ideal resolution would be to remove the 2-field version and make the
third field required. I filed PR20506 to track that.
I changed `test/Bitcode/upgrade-global-ctors.ll` to a negative test and
duplicated the `llvm-link` check in `test/Linker/global_ctors.ll` to
check both upgrade directions.
Since I came across this as part of PR5680 (serializing use-list order),
I've also added the missing `verify-uselistorder` RUN line to
`test/Bitcode/metadata-2.ll`.
llvm-svn: 215457
`parseBitcodeFile()` uses the generic `getLazyBitcodeFile()` function as
a helper. Since `parseBitcodeFile()` isn't actually lazy -- it calls
`MaterializeAllPermanently()` -- bypass the unnecessary call to
`materializeForwardReferencedFunctions()` by extracting out a common
helper function. This removes the last of the use-list churn caused by
blockaddresses.
This highlights that we can't reproduce use-list order of globals and
constants when parsing lazily -- but that's necessarily out of scope.
When we're parsing lazily, we never have all the functions in memory, so
the use-lists of globals (and constants that reference globals) are
always incomplete.
This is part of PR5680.
llvm-svn: 214581
Correctly sort self-users (such as PHI nodes). I added a targeted test
in `test/Bitcode/use-list-order.ll` and the final missing RUN line to
tests in `test/Assembly`.
This is part of PR5680.
llvm-svn: 214417
Since initializers of GlobalValues are being assigned IDs before
GlobalValues themselves, explicitly exclude GlobalValues from the
constant pool. Added targeted test in `test/Bitcode/use-list-order.ll`
and added two more RUN lines in `test/Assembly`.
This is part of PR5680.
llvm-svn: 214368
Before this patch we had
@a = weak global ...
but
@b = alias weak ...
The patch changes aliases to look more like global variables.
Looking at some really old code suggests that the reason was that the old
bison based parser had a reduction for alias linkages and another one for
global variable linkages. Putting the alias first avoided the reduce/reduce
conflict.
The days of the old .ll parser are long gone. The new one parses just "linkage"
and a later check is responsible for deciding if a linkage is valid in a
given context.
llvm-svn: 214355
When predicting use-list order, we visit functions in reverse order
followed by `GlobalValue`s and write out use-lists at the first
opportunity. In the reader, this will translate to *after* the last use
has been added.
For this to work, we actually need to descend into `GlobalValue`s.
Added a targeted test in `use-list-order.ll` and `RUN` lines to the
newly passing tests in `test/Bitcode`.
There are two remaining failures in `test/Bitcode`:
- blockaddress.ll: I haven't thought through how to model the way
block addresses change the order of use-lists (or how to work around
it).
- metadata-2.ll: There's an old-style `@llvm.used` global array here
that I suspect the .ll parser isn't upgrading properly. When it
round-trips through bitcode, the .bc reader *does* upgrade it, so
the extra variable (`i8* null`) has an extra use, and the shuffle
vector doesn't match.
I think the fix is to upgrade old-style global arrays (or reject
them?) in the .ll parser.
This is part of PR5680.
llvm-svn: 214321
r214242 was subtle enough it really deserves a targeted test with
comments. This adds some global variables that trigger the relevant
code path. Sorry this wasn't committed with the fix.
llvm-svn: 214243
To avoid unnecessary forward references, the reader doesn't process
initializers of `GlobalValue`s until after the constant pool has been
processed, and then in reverse order. Model this when predicting
use-list order. This gets two more Bitcode tests passing with
`llvm-uselistorder`.
Part of PR5680.
llvm-svn: 214242
Fix the sort of expected order in the reader to correctly return `false`
when comparing a `Use` against itself.
This was caught by test/Bitcode/binaryIntInstructions.3.2.ll, so I'm
adding a `RUN` line using `llvm-uselistorder` for every test in
`test/Bitcode` that passes.
A few tests still fail, so I'll investigate those next.
This is part of PR5680.
llvm-svn: 214157
Predict and serialize use-list order in bitcode. This makes the option
`-preserve-bc-use-list-order` work *most* of the time, but this is still
experimental.
- Builds a full value-table up front in the writer, sets up a list of
use-list orders to write out, and discards the table. This is a
simpler first step than determining the order from the various
overlapping IDs of values on-the-fly.
- The shuffles stored in the use-list order list have an unnecessarily
large memory footprint.
- `blockaddress` expressions cause functions to be materialized
out-of-order. For now I've ignored this problem, so use-list orders
will be wrong for constants used by functions that have block
addresses taken. There are a couple of ways to fix this, but I
don't have a concrete plan yet.
- When materializing functions lazily, the use-lists for constants
will not be correct. This use case is out of scope: what should the
use-list order be, if it's incomplete?
This is part of PR5680.
llvm-svn: 214125
Ugh. Turns out not even transformation passes link in how to read IR.
I sincerely believe the buildbots will finally agree with my system
after this though. (I don't really understand why all of this has been
working on my system, but not on all the buildbots.)
Create a new tool called llvm-uselistorder to use for verifying use-list
order. For now, just dump everything from the (now defunct)
-verify-use-list-order pass into the tool.
This might be a better way to test use-list order anyway.
Part of PR5680.
llvm-svn: 213957
Add a -verify-use-list-order pass, which shuffles use-list order, writes
to bitcode, reads back, and verifies that the (shuffled) order matches.
- The utility functions live in lib/IR/UseListOrder.cpp.
- Moved (and renamed) the command-line option to enable writing
use-lists, so that this pass can return early if the use-list orders
aren't being serialized.
It's not clear that this pass is the right direction long-term (perhaps
a separate tool instead?), but short-term it's a great way to test the
use-list order prototype. I've added an XFAIL-ed testcase that I'm
hoping to get working pretty quickly.
This is part of PR5680.
llvm-svn: 213945
We previously supported the align attribute on all (pointer) parameters, but we
only used it for byval parameters. However, it is completely consistent at the
IR level to treat 'align n' on all pointer parameters as an alignment
assumption on the pointer, and now we wll. Specifically, this causes
computeKnownBits to use the align attribute on all pointer parameters, not just
byval parameters. I've also added an explicit parameter attribute test for this
to test/Bitcode/attributes.ll.
And I've updated the LangRef to document the align parameter attribute (as it
turns out, it was not documented at all previously, although the byval
documentation mentioned that it could be used).
There are (at least) two benefits to doing this:
- It allows enhancing alignment based on the pointer alignment after inlining callees.
- It allows simplification of pointer arithmetic.
llvm-svn: 213670
This attribute indicates that the parameter or return pointer is
dereferenceable. Practically speaking, loads from such a pointer within the
associated byte range are safe to speculatively execute. Such pointer
parameters are common in source languages (C++ references, for example).
llvm-svn: 213385
This was an oversight in the original support. As it is, I stuffed this
bit into the alignment. The alignment is stored in log2 form, so it
doesn't need more than 5 bits, given that Value::MaximumAlignment is 1
<< 29.
Reviewers: nicholas
Differential Revision: http://reviews.llvm.org/D3943
llvm-svn: 213118
This commit adds a weak variant of the cmpxchg operation, as described
in C++11. A cmpxchg instruction with this modifier is permitted to
fail to store, even if the comparison indicated it should.
As a result, cmpxchg instructions must return a flag indicating
success in addition to their original iN value loaded. Thus, for
uniformity *all* cmpxchg instructions now return "{ iN, i1 }". The
second flag is 1 when the store succeeded.
At the DAG level, a new ATOMIC_CMP_SWAP_WITH_SUCCESS node has been
added as the natural representation for the new cmpxchg instructions.
It is a strong cmpxchg.
By default this gets Expanded to the existing ATOMIC_CMP_SWAP during
Legalization, so existing backends should see no change in behaviour.
If they wish to deal with the enhanced node instead, they can call
setOperationAction on it. Beware: as a node with 2 results, it cannot
be selected from TableGen.
Currently, no use is made of the extra information provided in this
patch. Test updates are almost entirely adapting the input IR to the
new scheme.
Summary for out of tree users:
------------------------------
+ Legacy Bitcode files are upgraded during read.
+ Legacy assembly IR files will be invalid.
+ Front-ends must adapt to different type for "cmpxchg".
+ Backends should be unaffected by default.
llvm-svn: 210903
It includes a pass that rewrites all indirect calls to jumptable functions to pass through these tables.
This also adds backend support for generating the jump-instruction tables on ARM and X86.
Note that since the jumptable attribute creates a second function pointer for a
function, any function marked with jumptable must also be marked with unnamed_addr.
llvm-svn: 210280
This patch changes GlobalAlias to point to an arbitrary ConstantExpr and it is
up to MC (or the system assembler) to decide if that expression is valid or not.
This reduces our ability to diagnose invalid uses and how early we can spot
them, but it also lets us do things like
@test5 = alias inttoptr(i32 sub (i32 ptrtoint (i32* @test2 to i32),
i32 ptrtoint (i32* @bar to i32)) to i32*)
An important implication of this patch is that the notion of aliased global
doesn't exist any more. The alias has to encode the information needed to
access it in its metadata (linkage, visibility, type, etc).
Another consequence to notice is that getSection has to return a "const char *".
It could return a NullTerminatedStringRef if there was such a thing, but when
that was proposed the decision was to just uses "const char*" for that.
llvm-svn: 210062
They are replaced with the same IR that is generated for the
vector-initializers in avxintrin.h.
The test verifies that we get back the original instruction. I haven't seen
this approach to be used in other auto-upgrade tests (i.e. llc + FileCheck)
but I think it's the most direct way to test this case. I believe this should
work because llc upgrades calls during parsing. (Other tests mostly check
that assembling and disassembling yields the upgraded IR.)
llvm-svn: 209863
This patch changes the design of GlobalAlias so that it doesn't take a
ConstantExpr anymore. It now points directly to a GlobalObject, but its type is
independent of the aliasee type.
To avoid changing all alias related tests in this patches, I kept the common
syntax
@foo = alias i32* @bar
to mean the same as now. The cases that used to use cast now use the more
general syntax
@foo = alias i16, i32* @bar.
Note that GlobalAlias now behaves a bit more like GlobalVariable. We
know that its type is always a pointer, so we omit the '*'.
For the bitcode, a nice surprise is that we were writing both identical types
already, so the format change is minimal. Auto upgrade is handled by looking
through the casts and no new fields are needed for now. New bitcode will
simply have different types for Alias and Aliasee.
One last interesting point in the patch is that replaceAllUsesWith becomes
smart enough to avoid putting a ConstantExpr in the aliasee. This seems better
than checking and updating every caller.
A followup patch will delete getAliasedGlobal now that it is redundant. Another
patch will add support for an explicit offset.
llvm-svn: 209007
Visibilities of `hidden` and `protected` are meaningless for symbols
with local linkage.
- Change the assembler to reject non-default visibility on symbols
with local linkage.
- Change the bitcode reader to auto-upgrade `hidden` and `protected`
to `default` when the linkage is local.
- Update LangRef.
<rdar://problem/16141113>
llvm-svn: 208263
This is similar to the 'tail' marker, except that it guarantees that
tail call optimization will occur. It also comes with convervative IR
verification rules that ensure that tail call optimization is possible.
Reviewers: nicholas
Differential Revision: http://llvm-reviews.chandlerc.com/D3240
llvm-svn: 207143
This adds a warning when linker_private or linker_private_weak is provided and
we handle it in a compatible manner.
Suggested by Chris Lattner!
llvm-svn: 205681
This restores the linker_private and linker_private_weak lexemes to permit
translation of the deprecated lexmes. The behaviour is identical to the bitcode
handling: linker_private and linker_private_weak are handled as if private had
been specified. This enables compatibility with IR generated by LLVM 3.4.
Reported on IRC by ki9a!
llvm-svn: 205675
These linkages were introduced some time ago, but it was never very
clear what exactly their semantics were or what they should be used
for. Some investigation found these uses:
* utf-16 strings in clang.
* non-unnamed_addr strings produced by the sanitizers.
It turns out they were just working around a more fundamental problem.
For some sections a MachO linker needs a symbol in order to split the
section into atoms, and llvm had no idea that was the case. I fixed
that in r201700 and it is now safe to use the private linkage. When
the object ends up in a section that requires symbols, llvm will use a
'l' prefix instead of a 'L' prefix and things just work.
With that, these linkages were already dead, but there was a potential
future user in the objc metadata information. I am still looking at
CGObjcMac.cpp, but at this point I am convinced that linker_private
and linker_private_weak are not what they need.
The objc uses are currently split in
* Regular symbols (no '\01' prefix). LLVM already directly provides
whatever semantics they need.
* Uses of a private name (start with "\01L" or "\01l") and private
linkage. We can drop the "\01L" and "\01l" prefixes as soon as llvm
agrees with clang on L being ok or not for a given section. I have two
patches in code review for this.
* Uses of private name and weak linkage.
The last case is the one that one could think would fit one of these
linkages. That is not the case. The semantics are
* the linker will merge these symbol by *name*.
* the linker will hide them in the final DSO.
Given that the merging is done by name, any of the private (or
internal) linkages would be a bad match. They allow llvm to rename the
symbols, and that is really not what we want. From the llvm point of
view, these objects should really be (linkonce|weak)(_odr)?.
For now, just keeping the "\01l" prefix is probably the best for these
symbols. If we one day want to have a more direct support in llvm,
IMHO what we should add is not a linkage, it is just a hidden_symbol
attribute. It would be applicable to multiple linkages. For example,
on weak it would produce the current behavior we have for objc
metadata. On internal, it would be equivalent to private (and we
should then remove private).
llvm-svn: 203866
The syntax for "cmpxchg" should now look something like:
cmpxchg i32* %addr, i32 42, i32 3 acquire monotonic
where the second ordering argument gives the required semantics in the case
that no exchange takes place. It should be no stronger than the first ordering
constraint and cannot be either "release" or "acq_rel" (since no store will
have taken place).
rdar://problem/15996804
llvm-svn: 203559
This includes instructions that relate to memory access (load/store/GEP), comparison instructions and calls.
Work was done by lama.saba@intel.com.
llvm-svn: 202647
This includes instructions with aggregate operands (insert/extract), instructions with vector operands (insert/extract/shuffle), binary arithmetic and bitwise instructions, conversion instructions and terminators.
Work was done by lama.saba@intel.com.
llvm-svn: 202262
Representing dllexport/dllimport as distinct linkage types prevents using
these attributes on templates and inline functions.
Instead of introducing further mixed linkage types to include linkonce and
weak ODR, the old import/export linkage types are replaced with a new
separate visibility-like specifier:
define available_externally dllimport void @f() {}
@Var = dllexport global i32 1, align 4
Linkage for dllexported globals and functions is now equal to their linkage
without dllexport. Imported globals and functions must be either
declarations with external linkage, or definitions with
AvailableExternallyLinkage.
llvm-svn: 199218
Representing dllexport/dllimport as distinct linkage types prevents using
these attributes on templates and inline functions.
Instead of introducing further mixed linkage types to include linkonce and
weak ODR, the old import/export linkage types are replaced with a new
separate visibility-like specifier:
define available_externally dllimport void @f() {}
@Var = dllexport global i32 1, align 4
Linkage for dllexported globals and functions is now equal to their linkage
without dllexport. Imported globals and functions must be either
declarations with external linkage, or definitions with
AvailableExternallyLinkage.
llvm-svn: 199204
The inalloca attribute is designed to support passing C++ objects by
value in the Microsoft C++ ABI. It behaves the same as byval, except
that it always implies that the argument is in memory and that the bytes
are never copied. This attribute allows the caller to take the address
of an outgoing argument's memory and execute arbitrary code to store
into it.
This patch adds basic IR support, docs, and verification. It does not
attempt to implement any lowering or fix any possibly broken transforms.
When this patch lands, a complete description of this feature should
appear at http://llvm.org/docs/InAlloca.html .
Differential Revision: http://llvm-reviews.chandlerc.com/D2173
llvm-svn: 197645