Standalone builds of projects other than llvm itself (lldb, libcxx,
etc) include HandleLLVMOptions but not the top level llvm CMakeLists,
so we need to set this variable here to ensure that it always has a
value.
This should fix the build issues some folks have been seeing.
llvm-svn: 357976
Summary:
The MergeValues() function would try to merge two entries if they shared
the same beginning label. Having the same beginning label means that the
former entry's range would be empty; however, after D55919 we no longer
create entries for empty ranges, so we can no longer land in a situation
where that check in MergeValues would succeed. Instead, the "merging" is
done by keeping the live values from the preceding empty ranges in
OpenRanges, and adding them to the first non-empty range.
Reviewers: aprantl, dblaikie, loladiro
Reviewed By: aprantl
Subscribers: llvm-commits
Tags: #debug-info, #llvm
Differential Revision: https://reviews.llvm.org/D59301
llvm-svn: 357974
The composite existed to simplify some other tablegen code and not really in an
important way. Remove the combined field and just calculate the vector size
using two ifs.
llvm-svn: 357972
The instruction's document this as W0 for the VEX encoding. But there's a
footnote mentioning that VEX.W is ignored in 64-bit mode. And the main VEX
encoding description says the VEX.W bit is ignored for instructions that are
equivalent to a legacy SSE instruction that uses REX.W to select a GPR which
would apply here.
By making this match EVEX we can remove a special case of allowing EVEX2VEX to
turn an EVEX.WIG instruction into VEX.W0.
llvm-svn: 357971
Switch part of the computeOverflowForSignedAdd() implementation to
use Range.isAllNegative() rather than KnownBits.isNegative() and
similar. They do the same thing, but using the ConstantRange methods
allows dropping the KnownBits variables more easily in D60420.
llvm-svn: 357969
It's been on in Android for a while without causing problems, so it's time
to make it the default and remove the flag.
Differential Revision: https://reviews.llvm.org/D60355
llvm-svn: 357960
This changes the operand type from v4f32/v2f64 to iPTR which seems more correct. But that doesn't seem to do anything other than change the comments in X86GenDAGISel.inc. Probably because we use a ComplexPattern to do the matching so there's no autogenerated code to change.
llvm-svn: 357959
The new value is taken from <mach/machine.h> in the MacOSX10.14 SDK from
Xcode 10.1. Update llvm-objdump and llvm-readobj accordingly.
Differential Revision: https://reviews.llvm.org/D58636
llvm-svn: 357945
A more general canonicalization between fdiv and fmul would not
handle this case because that would have to be limited by uses
to prevent 2 values from becoming 3 values:
(x/y) * (x/y) --> (x*x) / (y*y)
(But we probably should still have that limited -- but more general --
canonicalization independently of this change.)
llvm-svn: 357943
For functions whose callers don't check that enough input is present,
add checks at the start of the function that enough input is there and
set Error otherwise.
For functions that return AST objects, return nullptr instead of
incomplete AST objects with nullptr fields if an error occurred during
the function.
Introduce a new function demangleDeclarator() for the sequence
demangleFullyQualifiedSymbolName(); demangleEncodedSymbol() and
use it in the two places that had this sequence. Let this new function
check that ConversionOperatorIdentifiers have a valid TargetType.
Some of the bad inputs found by oss-fuzz, others by inspection.
Differential Revision: https://reviews.llvm.org/D60354
llvm-svn: 357936
Returning SDValue() makes the caller think custom lowering was unsuccessful and then it will fall back to trying to expand the original node. This expanded code will end up with no users and end up being pruned later. But it was useless unnecessary work to create it.
Instead return a MERGE_VALUES with all the results so the caller knows something changed. The caller can handle the replacements.
For one of the cases I had to use UNDEF has a dummy value for a result we know is unused. This should get pruned later.
llvm-svn: 357935
COMMON blocks are a feature of Fortran that has no direct analog in C languages, but they are similar to data sections in assembly language programming. A COMMON block is a named area of memory that holds a collection of variables. Fortran subprograms may map the COMMON block memory area to their own, possibly distinct, non-empty list of variables. A Fortran COMMON block might look like the following example.
COMMON /ALPHA/ I, J
For this construct, the compiler generates a new scope-like DI construct (!DICommonBlock) into which variables (see I, J above) can be placed. As the common block implies a range of storage with global lifetime, the !DICommonBlock refers to a !DIGlobalVariable. The Fortran variable that comprise the COMMON block are also linked via metadata to offsets within the global variable that stands for the entire common block.
@alpha_ = common global %alphabytes_ zeroinitializer, align 64, !dbg !27, !dbg !30, !dbg !33!14 = distinct !DISubprogram(…)
!20 = distinct !DICommonBlock(scope: !14, declaration: !25, name: "alpha")
!25 = distinct !DIGlobalVariable(scope: !20, name: "common alpha", type: !24)
!27 = !DIGlobalVariableExpression(var: !25, expr: !DIExpression())
!29 = distinct !DIGlobalVariable(scope: !20, name: "i", file: !3, type: !28)
!30 = !DIGlobalVariableExpression(var: !29, expr: !DIExpression())
!31 = distinct !DIGlobalVariable(scope: !20, name: "j", file: !3, type: !28)
!32 = !DIExpression(DW_OP_plus_uconst, 4)
!33 = !DIGlobalVariableExpression(var: !31, expr: !32)
The DWARF generated for this is as follows.
DW_TAG_common_block:
DW_AT_name: alpha
DW_AT_location: @alpha_+0
DW_TAG_variable:
DW_AT_name: common alpha
DW_AT_type: array of 8 bytes
DW_AT_location: @alpha_+0
DW_TAG_variable:
DW_AT_name: i
DW_AT_type: integer*4
DW_AT_location: @Alpha+0
DW_TAG_variable:
DW_AT_name: j
DW_AT_type: integer*4
DW_AT_location: @Alpha+4
Patch by Eric Schweitz!
Differential Revision: https://reviews.llvm.org/D54327
llvm-svn: 357934
Summary:
ThinLTOCodeGenerator currently does not preserve llvm.used symbols and
it can internalize them. In order to pass the necessary information to the
legacy ThinLTOCodeGenerator, the input to the code generator is
rewritten to be based on lto::InputFile.
This fixes: PR41236
rdar://problem/49293439
Reviewers: tejohnson, pcc, dexonsmith
Reviewed By: tejohnson
Subscribers: mehdi_amini, inglorion, eraman, hiraditya, jkorous, dang, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D60226
llvm-svn: 357931
Fixes bug 40992: https://bugs.llvm.org/show_bug.cgi?id=40992
There is potential for miscompiled code emitted from JumpThreading when
analyzing a block with one or more indirectbr or callbr predecessors. The
ProcessThreadableEdges() function incorrectly folds conditional branches
into an unconditional branch.
This patch prevents incorrect branch folding without fully pessimizing
other potential threading opportunities through the same basic block.
This IR shape was manually fed in via opt and is unclear if clang and the
full pass pipeline will ever emit similar code shapes.
Thanks to Matthias Liedtke for the bug report and simplified IR example.
Differential Revision: https://reviews.llvm.org/D60284
llvm-svn: 357930
It makes more sense to print out the number of micro opcodes that are issued
every cycle rather than the number of instructions issued per cycle.
This behavior is also consistent with the dispatch-stats: numbers from the two
views can now be easily compared.
llvm-svn: 357919
I was looking at a potential DAGCombiner fix for 1 of the regressions in D60278, and it caused severe regression test pain because x86 TLI lies about the desirability of 8-bit shift ops.
We've hinted at making all 8-bit ops undesirable for the reason in the code comment:
// TODO: Almost no 8-bit ops are desirable because they have no actual
// size/speed advantages vs. 32-bit ops, but they do have a major
// potential disadvantage by causing partial register stalls.
...but that leads to massive diffs and exposes all kinds of optimization holes itself.
Differential Revision: https://reviews.llvm.org/D60286
llvm-svn: 357912
First step towards removing the MOVMSK intrinsics completely - this patch expands MOVMSK to the pattern:
e.g. PMOVMSKB(v16i8 x):
%cmp = icmp slt <16 x i8> %x, zeroinitializer
%int = bitcast <16 x i8> %cmp to i16
%res = zext i16 %int to i32
Which is correctly handled by ISel and FastIsel (give or take an annoying movzx move....): https://godbolt.org/z/rkrSFW
Differential Revision: https://reviews.llvm.org/D60256
llvm-svn: 357909
Wanted to check if inablility to measure latency of CMOV32rm
is a regression from D60041 / D60138, but unable to do that
because the llvm-exegesis-{8,9} from debian sid fails
with that cryptic, unhelpful error.
I suspect this will be a better error.
llvm-svn: 357900
Simplify building with particular C++ standards by replacing the
specific "enable standard X" flags with a flag that allows specifying
the standard you want directly.
We preserve compatibility with the existing flags so that anyone with
those flags in existing caches won't break mysteriously.
Differential Revision: https://reviews.llvm.org/D60399
llvm-svn: 357899
Summary:
The ModuleList stream consists of an integer giving the number of
entries in the list, followed by the list itself. Each entry in the list
describes a module (dynamically loaded objects which were loaded in the
process when it crashed (or when the minidump was generated).
The code for reading the list is relatively straight-forward, with a
single gotcha. Some minidump writers are emitting padding after the
"count" field in order to align the subsequent list on 8 byte boundary
(this depends on how their ModuleList type was defined and the native
alignment of various types on their platform). Fortunately, the minidump
format contains enough redundancy (in the form of the stream length
field in the stream directory), which allows us to detect this situation
and correct it.
This patch just adds the ability to parse the stream. Code for
conversion to/from yaml will come in a follow-up patch.
Reviewers: zturner, amccarth, jhenderson, clayborg
Subscribers: jdoerfert, markmentovai, lldb-commits, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D60121
llvm-svn: 357897
Previously LowerOperationWrapper took the number of results from the original
node and counted that many results from the new node. This was intended to drop
chain operands from FP_TO_SINT lowering that uses X87 with memory operations to
stack temporaries. The final load had an extra chain output that needs to be
ignored.
Unfortunately, it didn't work with scatter which has 2 result operands, the
mask output which is discarded and a chain output. The chain output is the one
that is needed but it comes second and it would be dropped by the previous
logic here. To workaround this we were doing a ReplaceAllUses in the lowering
code so that the generic legalization code wouldn't see any uses to replace
since it had been given the wrong result/type.
After this change we take the LowerOperation result directly if the original
node has one result. This allows us to directly return the chain from scatter
or the load data from the FP_TO_SINT case. When the original node has multiple
results we'll ensure the returned node has the same number and copy them over.
For cases where the original node has multiple results and the new code for some
reason has even more results, MERGE_VALUES can be used to pass only the needed
results.
llvm-svn: 357887