splat.d is implemented but this subtest is currently disabled. This is because
it is difficult to match the appropriate IR on MIPS32. There is a patch under
review that should help with this so I hope to enable the subtest soon.
llvm-svn: 193680
The Type Legalizer recognizes that VSELECT needs to be split, because the type
is to wide for the given target. The same does not always apply to SETCC,
because less space is required to encode the result of a comparison. As a result
VSELECT is split and SETCC is unrolled into scalar comparisons.
This commit fixes the issue by checking for VSELECT-SETCC patterns in the DAG
Combiner. If a matching pattern is found, then the result mask of SETCC is
promoted to the expected vector mask type for the given target. This mask has
usually the same size as the VSELECT return type (except for Intel KNL). Now the
type legalizer will split both VSELECT and SETCC.
This allows the following X86 DAG Combine code to sucessfully detect the MIN/MAX
pattern. This fixes PR16695, PR17002, and <rdar://problem/14594431>.
Reviewed by Nadav
llvm-svn: 193676
One of the things that dynamic typing affects is the count of children a type has
Clear out the flag that makes us blindly believe the children count when a dynamic type change is detected
llvm-svn: 193663
Use EmitLabelOffsetDifference for handling on darwin platform when
non-darwin platforms use EmitLabelPlusOffset.
Also fix a bug in EmitLabelOffsetDifference where the size is hard-coded
to 4 even though Size is passed in as an argument.
llvm-svn: 193660
Fix a crasher that would occur if one tried to read memory as characters of some size != 1, e.g.
x -f c -s 10 buffer
This commit tries to do the right thing and uses the byte-size as the number of elements, unless both are specified and the number of elements is != 1
In this latter case (e.g. x -f c -s 10 -c 3 buffer) one could multiply the two and read 30 characters, but it seems a stretch in mind reading.
llvm-svn: 193659
To support ref_addr, we calculate the section offset of a DIE (i.e. offset
of a DIE from beginning of the debug info section). The Offset field in DIE
is currently CU-relative. To calculate the section offset, we add a
DebugInfoOffset field in CompileUnit to store the offset of a CU from beginning
of the debug info section. We set the value in DwarfUnits::computeSizeAndOffset
for each CompileUnit.
A helper function DIE::getCompileUnit is added to return the CU DIE that
the input DIE belongs to. We also add a map CUDieMap in DwarfDebug to help
finding the CU for a given CU DIE.
For a cross-referenced DIE, we first find the CU DIE it belongs to with
getCompileUnit, then we use CUDieMap to get the corresponding CU for the CU DIE.
Adding the section offset of the CU with the CU-relative offset of a DIE gives
us the seciton offset of the DIE.
We correctly emit ref_addr with relocation using EmitLabelPlusOffset when
doesDwarfUseRelocationsAcrossSections is true.
This commit handles the emission of DW_FORM_ref_addr when we have an attribute
with FORM_ref_addr. A follow-on patch will start using ref_addr when adding a
DIEEntry. This commit will be tested and verified in the follow-on patch.
Reviewed off-list by Eric, Thanks.
llvm-svn: 193658
after the DIE creation, we construct the context first.
Ensure that we create the context before we create a type so that we can add
the newly created type to the parent. Remove last use of addToContextOwner
now that it's not needed.
We use createAndAddDIE to wrap around "new DIE(". Now all shareable DIEs
should be added to their parents right after the creation.
Reviewed off-list by Eric, Thanks.
llvm-svn: 193657
Helper functions are added:
emitPostLd: emit a post-increment load operation with given size.
emitPostSt: emit a post-increment store operation with given size.
No functionality change.
llvm-svn: 193656
This modifies the pass to classify every SSP-triggering AllocaInst according to
an SSPLayoutKind (LargeArray, SmallArray, AddrOf). This analysis is collected
by the pass and made available for use, but no other pass uses it yet.
The next patch will make use of this analysis in PEI and StackSlot
passes. The end goal is to support ssp-strong stack layout rules.
WIP.
Differential Revision: http://llvm-reviews.chandlerc.com/D1789
llvm-svn: 193653
When constructing a scop sometimes the exact representation of a statement or
condition would be very complex, but there is a common case which is a lot
simpler, but which is only valid under certain assumptions. The assumed context
records the assumptions taken during the construction of this scop and that need
to be code generated as a run-time test.
At the moment, we do not yet model any assumptions, but only added the
AssumedContext as well as the isl-ast generation support. As a next step,
this needs to be hooked up with the isl code generation.
if (1) /* run-time condition */
{ /* optimized code */ }
else
{ /* original code */ }
llvm-svn: 193652
Use 32-bit types for the array instead of 64. This should
generally be better anyway.
In optimized + assert builds, I saw a failure when a
cond code / type combination that is never set was loading
a non-zero value and hitting the != Promote assert.
It turns out when loading the 64-bit value to do the shift,
the assembly loads the 2 32-bit halves from non-consecutive
addresses. The address the second half of the loaded uint64_t
doesn't include the offset of the array in the struct. Instead
of being offset + 4, it's just + 4.
I'm not entirely sure why this wasn't observed before.
setCondCodeAction isn't heavily used by the in-tree targets,
and not with the higher valued vector SimpleValueTypes. Only
PPC is using one of the > 32 valued types, and that is probably
never used by anyone on a 32-bit MSVC compiled host.
I ran into this when upgrading LLVM versions, so I guess the
value loaded from the nonsense address happened to work out
before.
No test since I'm not really sure if / how it can be reproduced
with the current in tree targets, and it's not supposed to change
anything.
llvm-svn: 193650