The restriction that symbols can only have identifier names is arbitrary, and artificially limits the names that a symbol may have. This change adds support for parsing and printing symbols that don't fit in the 'bare-identifier' grammar by printing the reference in quotes, e.g. @"0_my_reference" can now be used as a symbol name.
PiperOrigin-RevId: 273644768
This is matching what the runtime library is expecting.
Closestensorflow/mlir#171
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/171 from deven-amd:deven-rocdl-device-func-i64 80762629a8c34e844ebdc542b34dd783990db9db
PiperOrigin-RevId: 273640767
Add a pass to decorate the composite types used by
composite objects in the StorageBuffer, PhysicalStorageBuffer,
Uniform, and PushConstant storage classes with layout information.
Closestensorflow/mlir#156
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/156 from denis0x0D:sandbox/layout_info_decoration 7c50840fd38ca169a2da7ce9886b52b50c868b84
PiperOrigin-RevId: 273634140
This is similar to the `inlineRegionBefore` hook, except the original blocks are unchanged. The region to be cloned *must* not have been modified during the conversion process at the point of cloning, i.e. it must belong an operation that has yet to be converted, or the operation that is currently being converted.
PiperOrigin-RevId: 273622533
- bodies would earlier appear in the order (i, i+3, i+2, i+1) instead of
(i, i+1, i+2, i+3) for example for factor 4.
- clean up hardcoded test cases
Signed-off-by: Uday Bondhugula <uday@polymagelabs.com>
Closestensorflow/mlir#170
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/170 from bondhugula:ujam b66b405b2b1894a03b376952e32a9d0292042665
PiperOrigin-RevId: 273613131
MLIR uses symbol references to model references to many global entities, such as functions/variables/etc. Before this change, there is no way to actually reason about the uses of such entities. This change provides a walker for symbol references(via SymbolTable::walkSymbolUses), as well as 'use_empty' support(via SymbolTable::symbol_use_empty). It also resolves some deficiencies in the LangRef definition of SymbolRefAttr, namely the restrictions on where a SymbolRefAttr can be stored, ArrayAttr and DictionaryAttr, and the relationship with operations containing the SymbolTable trait.
PiperOrigin-RevId: 273549331
Originally, we were attaching attributes containing CUBIN blobs to the kernel
function called by `gpu.launch_func`. This kernel is now contained in a nested
module that is used as a compilation unit. Attach compiled CUBIN blobs to the
module rather than to the function since we were compiling the module. This
also avoids duplication of the attribute on multiple kernels within the same
module.
PiperOrigin-RevId: 273497303
Originally, the CUBIN getter function was introduced as a mechanism to
circumvent the absence of globals in the LLVM dialect. It would allocate memory
and populate it with the CUBIN data. LLVM dialect now supports globals and they
are already used to store CUBIN data, making the getter function a trivial
address computation of a global. Emit the address computation directly at the
place of `gpu.launch_func` instead of putting it in a function and calling it.
This simplifies the conversion flow and prepares it for using the
DialectConversion infrastructure.
PiperOrigin-RevId: 273496221
Now that the accessor function is a trivial getter of the global variable, it
makes less sense to have the getter generation as a separate pass. Move the
getter generation into the lowering of `gpu.launch_func` to CUDA calls. This
change is mostly code motion, but the process can be simplified further by
generating the addressof inplace instead of using a call. This is will be done
in a follow-up.
PiperOrigin-RevId: 273492517
The kernel function called by gpu.launch_func is now placed into an isolated
nested module during the outlining stage to simplify separate compilation.
Until recently, modules did not have names and could not be referenced. This
limitation was circumvented by introducing a stub kernel at the same name at
the same nesting level as the module containing the actual kernel. This
relation is only effective in one direction: from actual kernel function to its
launch_func "caller".
Leverage the recently introduced symbol name attributes on modules to refer to
a specific nested module from `gpu.launch_func`. This removes the implicit
connection between the identically named stub and kernel functions. It also
enables support for `gpu.launch_func`s to call different kernels located in the
same module.
PiperOrigin-RevId: 273491891
Some modules may have extremely large ElementsAttrs, which makes debugging involving IR dumping extremely slow and painful. This change adds a flag that will elide ElementsAttrs with a "large"(as defined by the user) number of elements by printing "..." instead of the element data.
PiperOrigin-RevId: 273413100
The SPIR-V spec recommends all OpUndef instructions be generated at
module level. For the SPIR-V dialect its better for UndefOp to produce
an SSA value for use with other instructions. If UndefOp is to be used
at module level, it cannot produce an SSA value (use of this SSA value
within FuncOp would need implicit capture). To satisfy needs of the
SPIR-V spec while making it simpler to represent UndefOp in the SPIR-V
dialect, the serialization is updated to create OpUndef instruction
at module scope.
PiperOrigin-RevId: 273355526
The structured selection/loop's entry block does not have arguments.
If the function's header block is also part of the structured control
flow, we cannot just simply erase it because it may contain arguments
matching the function signature and used by the cloned blocks. Instead,
turn it into a block only containing a spv.Branch op.
Also, we can directly emit instructions for the spv.selection header
block to the block containing the spv.selection op. This eliminates
unnecessary branches in the SPIR-V blob.
Added a test for nested spv.loop.
PiperOrigin-RevId: 273351424
Now that MLIR has a standardized StridedMemRef descriptor, it becomes very easy to interact with external library functions and build utilities directly in C++.
This CL introduces basic printing support in a libmlir_utils.so.
Unit tests are rewritten using this feature and also to improve coverage.
For now, C mandates that we have a unique function for each MemRef element type and rank.
In a future a simple unranked descriptor can be introduced to only require uniqu'ing by element type.
PiperOrigin-RevId: 273304741
Now that linalg.view and strided memrefs are unified, there is no reason to
disallow AllocOp in alias analysis. This CLs adds support for AllocOp which allows writing shorter tests that do not require explicitly creating a view for
each operation.
PiperOrigin-RevId: 273303060
See RFC: https://groups.google.com/a/tensorflow.org/forum/#!topic/mlir/xE2IzfhE3Wg.
Opaque location stores two pointers, one of them points to some data structure that is external to MLIR, and the other one is unique for each type and represents type id of that data structure. OpaqueLoc also stores an optional location that can be used if the first one is not suitable.
OpaqueLoc is managed similar to FileLineColLoc. It is passed around by MLIR transformations and can be used in compound locations like CallSiteLoc.
PiperOrigin-RevId: 273266510
This allows confirming that a scalar argument has the same element type as a shaped one. It's easy to validate a type is shaped on its own if that's desirable, so this shouldn't make that use case harder. This matches the behavior of other traits that operate on element type (e.g. AllElementTypesMatch). Also this makes the code simpler because now we just use getElementTypeOrSelf.
Verified that all uses in core already check the type is shaped in another way.
PiperOrigin-RevId: 273068507
1. Rename a few ops to make it clear they operate on *element* types.
2. Remove unused and generic operand and result ODS names (e.g. $res, $arg, $input). These are just clutter and don't make the op definitions any clearer.
3. Give test cases with duplicate names clearer names.
4. Add missing test case for no operands in SameOperandAndResultElementType.
PiperOrigin-RevId: 273067933
Use `getParentOfType<FunctionOp>()` instead of `cast<FuncOp>(getParentOp())`
to avoid crash when return ops are used inside spv.selection/spv.loop.
PiperOrigin-RevId: 273006041
This is fixing a build failure, usually non-deterministic because of
parallelism in the build, but could be reliably reproduced:
ninja projects/mlir/test/lib/TestDialect/CMakeFiles/MLIRTestDialect.dir/TestPatterns.cpp.o
PiperOrigin-RevId: 272998436
Adding support for OpUndef instruction. Updating the dialect
generation script to fix a few bugs in the instruction spec
generation.
PiperOrigin-RevId: 272975685
Certain lowering patterns were reported as [missing](https://groups.google.com/a/tensorflow.org/forum/#!topic/mlir/dkdmHa77sSQ).
This CL adds them and allows Linalg/roundtrip.mlir and Linalg/loops.mlir to lower to LLVM directly. Those 2 tests are updated to additionally check that the direct lowering to LLVM does not crash.
The following points, left as TODOs still need to be addressed for correct end-to-end execution:
1. the lowering for ConvOp needs to pass attributes such as strides and dilations; the external library call needs to support it.
2. the lowering for GenericOp needs to support lowering to loops as a DialectConversion pattern. This is blocked on the DialectConversion infrastructure accepting an OperationFolder.
PiperOrigin-RevId: 272878131
Some dialects have implicit conversions inherent in their modeling, meaning that a call may have a different type that the type that the callable expects. To support this, a hook is added to the dialect interface that allows for materializing conversion operations during inlining when there is a mismatch. A hook is also added to the callable interface to allow for introspecting the expected result types.
PiperOrigin-RevId: 272814379
This allows for the inliner to work on arbitrary call operations. The updated inliner will also work bottom-up through the callgraph enabling support for multiple levels of inlining.
PiperOrigin-RevId: 272813876
The first dim length of the axisStats attribute should equals to the slice size
of the input argument when splitted by the axis dimension.
PiperOrigin-RevId: 272798042
This CL implements the last remaining bit of the [strided memref proposal](https://groups.google.com/a/tensorflow.org/forum/#!topic/mlir/MaL8m2nXuio).
The syntax is a bit more explicit than what was originally proposed and resembles:
`memref<?x?xf32, offset: 0 strides: [?, 1]>`
Nonnegative strides and offsets are currently supported. Future extensions will include negative strides.
This also gives a concrete example of syntactic sugar for the ([RFC] Proposed Changes to MemRef and Tensor MLIR Types)[https://groups.google.com/a/tensorflow.org/forum/#!topic/mlir/-wKHANzDNTg].
The underlying implementation still uses AffineMap layout.
PiperOrigin-RevId: 272717437
Modules are now Ops and, as such, can be nested. They do not produce an SSA
value so there is no possibility to refer to them in the IR. Introduce support
for symbol names attached to the module Op so that it can be referred to using
SymbolRefAttrs. The name is optional, for example the implicit top-level module
does not have a name.
PiperOrigin-RevId: 272671600
This makes the name of the conversion pass more consistent with the naming
scheme, since it actually converts from the Loop dialect to the Standard
dialect rather than working with arbitrary control flow operations.
PiperOrigin-RevId: 272612112
As specified in the MLIR language reference and rationale documents, `memref`
types should not be allowed to have `index` as element types. As observed in
https://groups.google.com/a/tensorflow.org/forum/#!msg/mlir/P49hVWqTMNc/nW89a4i_AgAJ
this restriction was lifted when canonicalization unit tests for affine
operations were introduced, without sufficient motivation to lift the
restriction itself. The test in question can be trivially rewritten (return
the value from a function instead of storing it to prevent DCE from removing
the producer operation) and the restriction put back in place.
If `memref<...x index>` is relevant for some use cases, the relaxation of the
type system can be implemented separately with appropriate modifications to the
documentation.
PiperOrigin-RevId: 272607043
This also adds coverage with a missing test, which uncovered a bug in the conditional for testing whether an offset is dynamic or not.
PiperOrigin-RevId: 272505798
Similar to spv.loop, spv.selection is another op for modelling
SPIR-V structured control flow. It covers both OpBranchConditional
and OpSwitch with OpSelectionMerge.
Instead of having a `spv.SelectionMerge` op to directly model
selection merge instruction for indicating the merge target,
we use regions to delimit the boundary of the selection: the
merge target is the next op following the `spv.selection` op.
This way it's easier to discover all blocks belonging to
the selection and it plays nicer with the MLIR system.
PiperOrigin-RevId: 272475006
This is a follow-up to the PRtensorflow/mlir#146 which introduced the ROCDL Dialect. This PR introduces a pass to lower GPU Dialect to the ROCDL Dialect. As with the previous PR, this one builds on the work done by @whchung, and addresses most of the review comments in the original PR.
Closestensorflow/mlir#154
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/154 from deven-amd:deven-lower-gpu-to-rocdl 809893e08236da5ab6a38e3459692fa04247773d
PiperOrigin-RevId: 272390729
A recent ABI compatibility change affected the conversion from standard
CallOp/CallIndirectOp to LLVM::CallOp by changing its signature. In order to
analyze the signature, the code was looking up the callee symbol in the module.
This is incorrect since, during the conversion, the module may contain both the
original and the converted function op that have the same symbol name. There is
no strict guarantee on which of the two symbols will be found by the lookup.
The conversion was not failing because the type legalizer converts the LLVM
types to themselves making the original and the converted function signatures
ultimately produce the same type.
Instead of looking up the function signature to get the list of result types,
use the types of the CallOp/CallIndirectOp results which must match those of
the function in valid IR. These types are guaranteed to be the original,
unconverted types when converting the operation. Furthermore, this avoids the
need to perform a lookup of a symbol name in the module which may be expensive.
Finally, propagate attributes as-is from the original op to the converted op
since they share the attribute name for the callee of direct calls and the rest
of attributes are not affected by the conversion. This removes the need for
additional contorsions between direct and indirect calls to extract the name of
the optional callee attribute only to insert it back. This also prevents the
conversion from unintentionally dropping the other attributes of the op.
PiperOrigin-RevId: 272218871
This CL finishes the implementation of the Linalg + Affine type unification of the [strided memref RFC](https://groups.google.com/a/tensorflow.org/forum/#!topic/mlir/MaL8m2nXuio).
As a consequence, the !linalg.view type, linalg::DimOp, linalg::LoadOp and linalg::StoreOp can now disappear and Linalg can use standard types everywhere.
PiperOrigin-RevId: 272187165
Perform second reduce only with first warp. This requires an additional __sync_threads(), but doesn't need special handling when the last warp is small. This simplifies support for block sizes that are not multiple of 32.
Supporting partial warp reduce will be done in a separate CL.
PiperOrigin-RevId: 272168917
According to the SPIR-V spec:
"Length is the number of elements in the array. It must be at least 1."
Closestensorflow/mlir#160
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/160 from denis0x0D:sandbox/array_len 0840dc0986ad0088a3aa7d5d8d3e97d489377ed9
PiperOrigin-RevId: 272094669
Add DeclareOpInterfaceFunctions to enable specifying whether OpInterfaceMethods
for an OpInterface should be generated automatically. This avoids needing to
declare the extra methods, while also allowing adding function declaration by way of trait/inheritance.
Most of this change is mechanical/extracting classes to be reusable.
PiperOrigin-RevId: 272042739
This CL finishes the implementation of the lowering part of the [strided memref RFC](https://groups.google.com/a/tensorflow.org/forum/#!topic/mlir/MaL8m2nXuio).
Strided memrefs correspond conceptually to the following templated C++ struct:
```
template <typename Elem, size_t Rank>
struct {
Elem *ptr;
int64_t offset;
int64_t sizes[Rank];
int64_t strides[Rank];
};
```
The linearization procedure for address calculation for strided memrefs is the same as for linalg views:
`base_offset + SUM_i index_i * stride_i`.
The following CL will unify Linalg and Standard by removing !linalg.view in favor of strided memrefs.
PiperOrigin-RevId: 272033399
Add operations corresponding to OpLogicalAnd, OpLogicalNot,
OpLogicalEqual, OpLogicalNotEqual and OpLogicalOr instructions in
SPIR-V dialect. This needs changes to class hierarchy in SPIR-V
TableGen files to split SPIRVLogicalOp into SPIRVLogicalUnaryOp and
SPIRVLogicalBinaryOp. All derived classes of SPIRVLogicalOp are
updated accordingly.
Update the spirv dialect generation script to
1) Allow specifying base class to use for instruction spec generation
and file name to generate the specification in separately.
2) Use the existing descriptions for operations.
3) Update define_inst.sh to also invoke define_opcode.sh to also
define the corresponding SPIR-V instruction opcode enum.
PiperOrigin-RevId: 272014876
MemRefType::getStrides uses AffineExpr::walk which operates in post-order from the leaves. In order to compute strides properly, it needs to escape on terminal nodes and analyze binary ops only. This did not work for AffineExpr that consist of a single term (i.e. without a binary op).
This CL fixes the corner case and adds relevant tests.
PiperOrigin-RevId: 271975746
Use OpInterfaces to add an interface for ops defining a return type function.
This change does not use this trait in any meaningful way, I'll use it in a
follow up to generalize and unify some of the op type traits/constraints. Also,
currently the infer type function can only be manually specified in C++, that should rather be the fallback in future.
PiperOrigin-RevId: 271883746