As indicated by the tests, it is possible to feed the AsmParser an
invalid datalayout string. We should verify the result of parsing this
string regardless of whether or not we have assertions enabled.
llvm-svn: 223898
be BigEndian so the default can continue to be zero-initialized.
This is one of the prerequisites to making DataLayout a constant and
always available part of every module.
llvm-svn: 220193
With this a DataLayoutPass can be reused for multiple modules.
Once we have doInitialization/doFinalization, it doesn't seem necessary to pass
a Module to the constructor.
Overall this change seems in line with the idea of making DataLayout a required
part of Module. With it the only way of having a DataLayout used is to add it
to the Module.
llvm-svn: 217548
string_ostream is a safe and efficient string builder that combines opaque
stack storage with a built-in ostream interface.
small_string_ostream<bytes> additionally permits an explicit stack storage size
other than the default 128 bytes to be provided. Beyond that, storage is
transferred to the heap.
This convenient class can be used in most places an
std::string+raw_string_ostream pair or SmallString<>+raw_svector_ostream pair
would previously have been used, in order to guarantee consistent access
without byte truncation.
The patch also converts much of LLVM to use the new facility. These changes
include several probable bug fixes for truncated output, a programming error
that's no longer possible with the new interface.
llvm-svn: 211749
name might indicate, it is an iterator over the types in an instruction
in the IR.... You see where this is going.
Another step of modularizing the support library.
llvm-svn: 202815
We don't have any test with more than 6 address spaces, so a DenseMap is
probably not the correct answer.
An unsorted array would also be OK, but we have to sort it for printing anyway.
llvm-svn: 202275
Eventually DataLayoutPass should go away, but for now that is the only easy
way to get a DataLayout in some APIs. This patch only changes the ones that
have easy access to a Module.
One interesting issue with sometimes using DataLayoutPass and sometimes
fetching it from the Module is that we have to make sure they are equivalent.
We can get most of the way there by always constructing the pass with a Module.
In fact, the pass could be changed to point to an external DataLayout instead
of owning one to make this stricter.
Unfortunately, the C api passes a DataLayout, so it has to be up to the caller
to make sure the pass and the module are in sync.
llvm-svn: 202204
No tool does this currently, but as everything else in a module we should be
able to change its DataLayout.
Most of the fix is in DataLayout to make sure it can be reset properly.
The test uses Module::setDataLayout since the fact that we mutate a DataLayout
is an implementation detail. The module could hold a OwningPtr<DataLayout> and
the DataLayout itself could be immutable.
Thanks to Philip Reames for pushing me in the right direction.
llvm-svn: 202198
Now that DataLayout is not a pass, store one in Module.
Since the C API expects to be able to get a char* to the datalayout description,
we have to keep a std::string somewhere. This patch keeps it in Module and also
uses it to represent modules without a DataLayout.
Once DataLayout is mandatory, we should probably move the string to DataLayout
itself since it won't be necessary anymore to represent the special case of a
module without a DataLayout.
llvm-svn: 202190
Before this patch any program that wanted to know the final symbol name of a
GlobalValue had to link with Target.
This patch implements a compromise solution where the mangler uses DataLayout.
This way, any tool that already links with Target (llc, clang) gets the exact
behavior as before and new IR files can be mangled without linking with Target.
With this patch the mangler is constructed with just a DataLayout and DataLayout
is extended to include the information the Mangler needs.
llvm-svn: 198438
During the years there have been some attempts at figuring out how to
align byval arguments. A look at the commit log suggests that they
were
* Use the ABI alignment.
* When that was not sufficient for x86-64, I added the 's' specification to
DataLayout.
* When that was not sufficient Evan added the virtual getByValTypeAlignment.
* When even that was not sufficient, we just got the FE to add the alignment
to the byval.
This patch is just a simple cleanup that removes my first attempt at fixing the
problem. I also added an AArch64 implementation of getByValTypeAlignment to
make sure this patch is a nop. I also left the 's' parsing for backward
compatibility.
I will send a short email to llvmdev about the change for anyone maintaining
an out of tree target.
llvm-svn: 198287
I have a pending change for clang to use getStringRepresentation to check
that its DataLayout is in sync with llvm's.
getStringRepresentation is not called from llvm itself, so far it is mostly
a debugging aid, so the shorter strings are an independent improvement.
llvm-svn: 197740
If there are no legal integers, assume 1 byte.
This makes more sense than using the pointer size as
a guess for the maximum GPR width.
It is conceivable to want to use some 64-bit pointers
on a target where 64-bit integers aren't legal.
llvm-svn: 190817
These were reverted in r167222 along with the rest
of the last different address space pointer size attempt.
These will be used in later commits.
llvm-svn: 187223
The original code used i32, and i64 if legal. This introduced unneeded
casts when they aren't legal, or when the index variable i has another
type. In order of preference: try to use i's type; use the smallest
fitting legal type (using an added DataLayout method); default to i32.
A testcase checks that this works when the index gep operand is i16.
Patch by : Ahmed Bougacha <ahmed.bougacha@gmail.com>
Reviewed by : Duncan
llvm-svn: 177712
header.
This method is called in the hot path for *many* passes, SROA is what
caught my interest. A common pattern is that which branch of the switch
should be taken is known in the callsite and so it is a very good
candidate for inlining and simplification. Moving it into the header
allows the optimizer to fold a lot of boring, repeatitive code in
callers of this routine.
I'm seeing pretty significant speedups in parts of SROA and I suspect
other passes will see similar speedups if they end up working with type
sizes frequently. I've not seen any significant growth of the binaries
as a consequence, but let me know if you see anything suspicious here.
llvm-svn: 177632
This pass is meant to be immutable, however it holds mutable state to cache StructLayouts.
This method will allow the pass manager to clear the mutable state between runs.
Note that unfortunately it is still necessary to have the destructor, even though it does the
same thing as doFinalization. This is because most TargetMachines embed a DataLayout on which
doFinalization isn't run as its never added to the pass manager.
I also didn't think it was necessary to complication things with a deInit method for which
doFinalization and ~DataLayout both call as there's only one field of mutable state. If we had
more fields to finalize i'd have added this.
llvm-svn: 176877
into their new header subdirectory: include/llvm/IR. This matches the
directory structure of lib, and begins to correct a long standing point
of file layout clutter in LLVM.
There are still more header files to move here, but I wanted to handle
them in separate commits to make tracking what files make sense at each
layer easier.
The only really questionable files here are the target intrinsic
tablegen files. But that's a battle I'd rather not fight today.
I've updated both CMake and Makefile build systems (I think, and my
tests think, but I may have missed something).
I've also re-sorted the includes throughout the project. I'll be
committing updates to Clang, DragonEgg, and Polly momentarily.
llvm-svn: 171366
Aside from moving the actual files, this patch only updates the build
system and the source file comments under lib/... that are relevant.
I'll be updating other docs and other files in smaller subsequnet
commits.
While I've tried to test this, but it is entirely possible that there
will still be some build system fallout.
Also, note that I've not changed the library name itself: libLLVMCore.a
is still the library name. I'd be interested in others' opinions about
whether we should rename this as well (I think we should, just not sure
what it might break)
llvm-svn: 171359