This abstracts away the test for "when can we fold across a MachineInstruction"
into the the MI interface, and changes call-frame optimization use the same test
the peephole optimizer users.
Differential Revision: http://reviews.llvm.org/D11945
llvm-svn: 244729
As discussed in D11886, this patch moves the SSE/AVX vector blend folding to instcombiner from PerformINTRINSIC_WO_CHAINCombine (which allows us to remove this completely).
InstCombiner already had partial support for this, I just had to add support for zero (ConstantAggregateZero) masks and also the case where both selection inputs were the same (allowing us to ignore the mask).
I also moved all the relevant combine tests into InstCombine/blend_x86.ll
Differential Revision: http://reviews.llvm.org/D11934
llvm-svn: 244723
The same value is used multiple times through the function. Hoist the condition
into a variable. This should fix a silly static analysis warning where the
conditions flip around. No functional change intended.
llvm-svn: 244713
This commit transforms the mips-specific 'MipsCallEntry' subclass of the
'PseudoSourceValue' class into two, target-independent subclasses named
'GlobalValuePseudoSourceValue' and 'ExternalSymbolPseudoSourceValue'.
This change makes it easier to serialize the pseudo source values by removing
target-specific pseudo source values.
Reviewers: Akira Hatanaka
llvm-svn: 244698
This commit removes the global manager variable which is responsible for
storing and allocating pseudo source values and instead it introduces a new
manager class named 'PseudoSourceValueManager'. Machine functions now own an
instance of the pseudo source value manager class.
This commit also modifies the 'get...' methods in the 'MachinePointerInfo'
class to construct pseudo source values using the instance of the pseudo
source value manager object from the machine function.
This commit updates calls to the 'get...' methods from the 'MachinePointerInfo'
class in a lot of different files because those calls now need to pass in a
reference to a machine function to those methods.
This change will make it easier to serialize pseudo source values as it will
enable me to transform the mips specific MipsCallEntry PseudoSourceValue
subclass into two target independent subclasses.
Reviewers: Akira Hatanaka
llvm-svn: 244693
This commit introduces a new enumerator named 'PSVKind' in the
'PseudoSourceValue' class. This enumerator is now used to distinguish between
the various kinds of pseudo source values.
This change is done in preparation for the changes to the pseudo source value
object management and to the PseudoSourceValue's class hierarchy - the next two
PseudoSourceValue commits will get rid of the global variable that manages the
pseudo source values and the mips specific MipsCallEntry subclass.
Reviewers: Akira Hatanaka
llvm-svn: 244687
For NVPTX, try to use 32-bit division instead of 64-bit division when the dividend and divisor
fit in 32 bits. This speeds up some internal benchmarks significantly. The underlying reason
is that many index computations are carried out in 64-bits but never actually exceed the
capacity of a 32-bit word.
llvm-svn: 244684
Some of the FP comparisons (ueq, one, ult, ule, ugt, uge) are currently broken, I'll fix them in a follow-up.
Reviewers: sunfish
Subscribers: llvm-commits, jfb
Differential Revision: http://reviews.llvm.org/D11924
llvm-svn: 244665
Summary: Implementation is the same as in AArch64.
Subscribers: aemerson, jfb, llvm-commits, sunfish
Differential Revision: http://reviews.llvm.org/D11956
llvm-svn: 244655
First step in preventing immediates that occur more than once within a single
basic block from being pulled into their users, in order to prevent unnecessary
large instruction encoding .Currently enabled only when optimizing for size.
Patch by: zia.ansari@intel.com
Differential Revision: http://reviews.llvm.org/D11363
llvm-svn: 244601
Lower Intrinsic::aarch64_neon_fmin/fmax to fminnum/fmannum and match that instead. Minimal functional change:
- Extra tests added because coverage of scalar fminnm/fmaxnm instructions was nonexistant.
- f16 test updated because now we actually generate scalar fminnm/fmaxnm we no longer need to bail out to a libcall!
llvm-svn: 244595
Lower Intrinsic::arm_neon_vmins/vmaxs to fminnan/fmaxnan and match that instead. This is important because SDAG will soon be able to select FMINNAN itself, so we need a unified lowering path for intrinsics and SDAG.
NFCI.
llvm-svn: 244593
Lower the intrinsic to a FMINNUM/FMAXNUM node and select that instead. This is important because soon SDAG will be able to select FMINNUM/FMAXNUM itself, so we need an integrated lowering path between SDAG and intrinsics.
NFCI.
llvm-svn: 244592
REPE, REPZ, REPNZ, REPNE should have mnemonics for Intel syntax as well.
Currently using these instructions causes compilation errors for Intel syntax.
Differential Revision: http://reviews.llvm.org/D11794
llvm-svn: 244584
The "imul reg, imm" alias is not defined for intel syntax.
In intel syntax there is no w/l/q suffix for the imul instruction.
Differential Revision: http://reviews.llvm.org/D11887
llvm-svn: 244582
Summary:
This patch remaps the assembly idiom 'move' to 'or' instead of 'daddu' or
'addu'. The use of addu/daddu instead of or as move was highlighted as a
performance issue during the analysis of a recent 64bit design. Originally
move was encoded as 'or' by binutils but was changed for the r10k cpu family
due to their pipeline which had 2 arithmetic units and a single logical unit,
and so could issue multiple (d)addu based moves at the same time but only 1
logical move.
This patch preserves the disassembly behaviour so that disassembling a old style
(d)addu move still appears as move, but assembling move always gives an or
Patch by Simon Dardis.
Reviewers: vkalintiris
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11796
llvm-svn: 244579
When optimizing for size, replace "addl $4, %esp" and "addl $8, %esp"
following a call by one or two pops, respectively. We don't try to do it in
general, but only when the stack adjustment immediately follows a call - which
is the most common case.
That allows taking a short-cut when trying to find a free register to pop into,
instead of a full-blown liveness check. If the adjustment immediately follows a
call, then every register the call clobbers but doesn't define should be dead at
that point, and can be used.
Differential Revision: http://reviews.llvm.org/D11749
llvm-svn: 244578
Summary: I somehow forgot to add these when I added the basic floating-point opcodes. Also remove ceil/floor/trunc/nearestint for now, and add them only when properly tested.
Subscribers: llvm-commits, sunfish, jfb
Differential Revision: http://reviews.llvm.org/D11927
llvm-svn: 244562
Summary: convertToHexString doesn't represent them correctly at this point in time. This is a follow-up to sunfish's suggestion in D11914.
Subscribers: llvm-commits, sunfish, jfb
Differential Revision: http://reviews.llvm.org/D11925
llvm-svn: 244551
Summary:
For now output using C99's hexadecimal floating-point representation.
This patch also cleans up how machine operands are printed: instead of special-casing per type of machine instruction, the code now handles operands generically.
Reviewers: sunfish
Subscribers: llvm-commits, jfb
Differential Revision: http://reviews.llvm.org/D11914
llvm-svn: 244520
NaCl's sandbox doesn't allow PUSHF/POPF out of security concerns (priviledged emulators have forgotten to mask system bits in the past, and EFLAGS's DF bit is a constant source of hilarity). Commit r220529 fixed PR20376 by saving cmpxchg's flags result using EFLAGS, this commit now generated LAHF/SAHF instead, for all of x86 (not just NaCl) because it leads to an overall performance gain over PUSHF/POPF.
As with the previous patch this code generation is pretty bad because it occurs very later, after register allocation, and in many cases it rematerializes flags which were already available (e.g. already in a register through SETE). Fortunately it's somewhat rare that this code needs to fire.
I did [[ https://github.com/jfbastien/benchmark-x86-flags | a bit of benchmarking ]], the results on an Intel Haswell E5-2690 CPU at 2.9GHz are:
| Time per call (ms) | Runtime (ms) | Benchmark |
| 0.000012514 | 6257 | sete.i386 |
| 0.000012810 | 6405 | sete.i386-fast |
| 0.000010456 | 5228 | sete.x86-64 |
| 0.000010496 | 5248 | sete.x86-64-fast |
| 0.000012906 | 6453 | lahf-sahf.i386 |
| 0.000013236 | 6618 | lahf-sahf.i386-fast |
| 0.000010580 | 5290 | lahf-sahf.x86-64 |
| 0.000010304 | 5152 | lahf-sahf.x86-64-fast |
| 0.000028056 | 14028 | pushf-popf.i386 |
| 0.000027160 | 13580 | pushf-popf.i386-fast |
| 0.000023810 | 11905 | pushf-popf.x86-64 |
| 0.000026468 | 13234 | pushf-popf.x86-64-fast |
Clearly `PUSHF`/`POPF` are suboptimal. It doesn't really seems to be worth teaching LLVM about individual flags, at least not for this purpose.
Reviewers: rnk, jvoung, t.p.northover
Subscribers: llvm-commits
Differential revision: http://reviews.llvm.org/D6629
llvm-svn: 244503
As discussed in D11760, this patch moves the (V)PSRA(WD) arithmetic shift-by-constant folding to InstCombine to match the logical shift implementations.
Differential Revision: http://reviews.llvm.org/D11886
llvm-svn: 244495
The LDD/STD instructions can load/store a 64bit quantity from/to
memory to/from a consecutive even/odd pair of (32-bit) registers. They
are part of SparcV8, and also present in SparcV9. (Although deprecated
there, as you can store 64bits in one register).
As recommended on llvmdev in the thread "How to enable use of 64bit
load/store for 32bit architecture" from Apr 2015, I've modeled the
64-bit load/store operations as working on a v2i32 type, rather than
making i64 a legal type, but with few legal operations. The latter
does not (currently) work, as there is much code in llvm which assumes
that if i64 is legal, operations like "add" will actually work on it.
The same assumption does not hold for v2i32 -- for vector types, it is
workable to support only load/store, and expand everything else.
This patch:
- Adds a new register class, IntPair, for even/odd pairs of registers.
- Modifies the list of reserved registers, the stack spilling code,
and register copying code to support the IntPair register class.
- Adds support in AsmParser. (note that in asm text, you write the
name of the first register of the pair only. So the parser has to
morph the single register into the equivalent paired register).
- Adds the new instructions themselves (LDD/STD/LDDA/STDA).
- Hooks up the instructions and registers as a vector type v2i32. Adds
custom legalizer to transform i64 load/stores into v2i32 load/stores
and bitcasts, so that the new instructions can actually be
generated, and marks all operations other than load/store on v2i32
as needing to be expanded.
- Copies the unfortunate SelectInlineAsm hack from ARMISelDAGToDAG.
This hack undoes the transformation of i64 operands into two
arbitrarily-allocated separate i32 registers in
SelectionDAGBuilder. and instead passes them in a single
IntPair. (Arbitrarily allocated registers are not useful, asm code
expects to be receiving a pair, which can be passed to ldd/std.)
Also adds a bunch of test cases covering all the bugs I've added along
the way.
Differential Revision: http://reviews.llvm.org/D8713
llvm-svn: 244484
The SP was always unconditionally assigned to later, but initialised early.
This delays the initialisation, and avoids the dead store. Identified by
clang static analysis. No functional change intended.
llvm-svn: 244423
The pass adds new kernel arguments for image attributes, and
resolves calls to dummy attribute and resource id getter functions.
Patch by: Zoltan Gilian
llvm-svn: 244372
At this point the given Opc must be valid, otherwise we should
not look for a matching pair to form paired load or store.
Thanks to Chad to point out this piece of code!
llvm-svn: 244366
Summary:
With InstAlias, we don't need to print the _e32 portion of the mnemonic
when we print the $dst operand. This change makes it possible to
include vcc in the asm string when we switch VOPC over to having
implicit vcc defs.
Reviewers: arsenm
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11813
llvm-svn: 244362
Summary: We were using the SI encoding for VI.
Reviewers: arsenm
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11812
llvm-svn: 244332
Summary:
Port the ReconstructShuffle function from AArch64 to ARM
to handle mismatched incoming types in the BUILD_VECTOR
node.
This fixes an outstanding FIXME in the ReconstructShuffle
code.
Reviewers: t.p.northover, rengolin
Subscribers: aemerson, llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D11720
llvm-svn: 244314
Summary: WebAssembly's tablegen instructions have the names WebAssembly expects, but by LLVM convention they're uppercase and suffixed with their type after an underscore. Leave the C++ code that way, but print outt he names WebAssembly expects (lowercase, no type). We could teach tablegen to do this later, maybe by using `!cast<string>(node)` in the .td files.
Reviewers: sunfish
Subscribers: jfb, llvm-commits
Differential Revision: http://reviews.llvm.org/D11776
llvm-svn: 244305
When we are not emitting the condition for the branch, because the condition is
in another BB or SDAG did the selection for us, then we have to mask the flag in
the register with AND.
This is required when the condition comes from a truncate, because SDAG only
truncates down to a legal size of i32.
This fixes rdar://problem/22161062.
llvm-svn: 244291
This reverts commit r243198 and 243304.
Turns out this wasn't the correct fix for this problem. It works only within
FastISel, but fails when the truncate is selected by SDAG.
llvm-svn: 244287
After r244074, we now have a successors() method to iterate over
all the successors of a TerminatorInst. This commit changes a bunch
of eligible loops to use it.
llvm-svn: 244260
Summary: This allows us to consolidate several of the TableGen patterns.
Reviewers: arsenm
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11602
llvm-svn: 244253
This change improves EmitLoweredSelect() so that multiple contiguous CMOV pseudo
instructions with the same (or exactly opposite) conditions get lowered using a single
new basic-block. This eliminates unnecessary extra basic-blocks (and CFG merge points)
when contiguous CMOVs are being lowered.
Patch by: kevin.b.smith@intel.com
Differential Revision: http://reviews.llvm.org/D11428
llvm-svn: 244202
This commit implements the initial serialization of the machine operand target
flags. It extends the 'TargetInstrInfo' class to add two new methods that help
to provide text based serialization for the target flags.
This commit can serialize only the X86 target flags, and the target flags for
the other targets will be serialized in the follow-up commits.
Reviewers: Duncan P. N. Exon Smith
llvm-svn: 244185
Summary: The casts from String to PatFrag weren't needed if we instead provided an SDNode. This fix was suggested by @pete in D11382.
Subscribers: pete, llvm-commits
Differential Revision: http://reviews.llvm.org/D11788
llvm-svn: 244167
More specifically, make NVPTXISelDAGToDAG able to emit cached loads (LDG) for pointer induction variables.
Also fix latent bug where LDG was not restricted to kernel functions. I believe that this could not be triggered so far since we do not currently infer that a pointer is global outside a kernel function, and only loads of global pointers are considered for cached loads.
llvm-svn: 244166
Summary: PR24191 finds that the expected memory-register operations aren't generated when relaxed { load ; modify ; store } is used. This is similar to PR17281 which was addressed in D4796, but only for memory-immediate operations (and for memory orderings up to acquire and release). This patch also handles some floating-point operations.
Reviewers: reames, kcc, dvyukov, nadav, morisset, chandlerc, t.p.northover, pete
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11382
llvm-svn: 244128
rather than 'unsigned' for their costs.
For something like costs in particular there is a natural "negative"
value, that of savings or saved cost. As a consequence, there is a lot
of code that subtracts or creates negative values based on cost, all of
which is prone to awkwardness or bugs when dealing with an unsigned
type. Similarly, we *never* want these values to wrap, as that would
cause Very Bad code generation (likely percieved as an infinite loop as
we try to emit over 2^32 instructions or some such insanity).
All around 'int' seems a much better fit for these basic metrics. I've
added asserts to ensure that at least the TTI interface never returns
negative numbers here. If we ever have a use case for negative numbers,
we can remove this, but this way a bug where someone used '-1' to
produce a 'very large' cost will be caught by the assert.
This passes all tests, and is also UBSan clean.
No functional change intended.
Differential Revision: http://reviews.llvm.org/D11741
llvm-svn: 244080
To get the successors of a BB we currently do successors(BB) which
ultimately walks the successors of the BB's terminator.
This moves the iterator to TerminatorInst as thats what we're actually
using to do the iteration, and adds a member function to TerminatorInst
to allow us to iterate directly over successors given an instruction.
For example, we can now do
for (auto *Succ : BI->successors())
instead of
for (unsigned i = 0, e = BI->getNumSuccessors(); i != e; ++i)
Reviewed by Tobias Grosser.
llvm-svn: 244074
Summary: Among other things, this allows -print-after-all/-print-before-all to
dump IR around this pass.
IIRC, this pass is off by default, but it's still helpful when debugging.
llvm-svn: 244056
Summary: Among other things, this allows -print-after-all/-print-before-all to
dump IR around this pass.
This is the AArch64 version of r243052.
llvm-svn: 244041
return StringSwitch<int>(Flags)
.Case("g", 0x1)
.Case("nzcvq", 0x2)
.Case("nzcvqg", 0x3)
.Default(-1);
...
// The _g and _nzcvqg versions are only valid if the DSP extension is
// available.
if (!Subtarget->hasThumb2DSP() && (Mask & 0x2))
return -1;
ARMARM confirms that the comment is right, and the code was wrong.
llvm-svn: 244029
Create wrapper methods in the Function class for the OptimizeForSize and MinSize
attributes. We want to hide the logic of "or'ing" them together when optimizing
just for size (-Os).
Currently, we are not consistent about this and rely on a front-end to always set
OptimizeForSize (-Os) if MinSize (-Oz) is on. Thus, there are 18 FIXME changes here
that should be added as follow-on patches with regression tests.
This patch is NFC-intended: it just replaces existing direct accesses of the attributes
by the equivalent wrapper call.
Differential Revision: http://reviews.llvm.org/D11734
llvm-svn: 243994
In the commentary for D11660, I wasn't sure if it was alright to create new
integer machine instructions without also creating the implicit EFLAGS operand.
From what I can see, the implicit operand is always created by the MachineInstrBuilder
based on the instruction type, so we don't have to do that explicitly. However, in
reviewing the debug output, I noticed that the operand was not marked as 'dead'.
The machine combiner should do that to preserve future optimization opportunities
that may be checking for that dead EFLAGS operand themselves.
Differential Revision: http://reviews.llvm.org/D11696
llvm-svn: 243990
Summary:
Previously, we would check whether the target is supported or not, only in
fastSelectInstruction(). This means that 64-bit targets could use FastISel too.
We fix this by checking every overridden method of the FastISel class and
by falling back to SelectionDAG if the target isn't supported. This change
should have been committed along with r243638, but somehow I missed it.
Reviewers: dsanders
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11755
llvm-svn: 243986
It introduced two regressions on 64-bit big-endian targets running under N32
(MultiSource/Benchmarks/tramp3d-v4/tramp3d-v4, and
MultiSource/Applications/kimwitu++/kc) The issue is that on 64-bit targets
comparisons such as BEQ compare the whole GPR64 but incorrectly tell the
instruction selector that they operate on GPR32's. This leads to the
elimination of i32->i64 extensions that are actually required by
comparisons to work correctly.
There's currently a patch under review that fixes this problem.
llvm-svn: 243984
This adds the software division routines for the Windows RTABI. These are not
expected to be used often though as most modern Windows ARM capable targets
support hardware division. In the case that the target CPU doesnt support
hardware division, this will be the fallback.
llvm-svn: 243952
Some are named "FP", others "SD", others still "FP*SD".
Rename all this to just use "FP", which, except for conversions
(which don't use this format naming scheme), implies "SD" anyway.
llvm-svn: 243936
It's already in SysRegMappings, no need to also have it in MSRMappings:
the latter is only used if we didn't find a match in the former.
llvm-svn: 243933
There's a bunch of code in LowerFCOPYSIGN that does smart lowering, and
is actually already vector-aware; let's use it instead of scalarizing!
The only interesting change is that for v2f32, we previously always used
use v4i32 as the integer vector type.
Use v2i32 instead, and mark FCOPYSIGN as Custom.
llvm-svn: 243926
This is necessary for WatchOS support, where the compact unwind format assumes
this kind of layout. For now we only want this on Swift-like CPUs though, where
it's been the Xcode behaviour for ages. Also, since it can expand the prologue
we don't want it at -Oz.
llvm-svn: 243884
Enabling merging of extern globals appears to be generally either beneficial or
harmless. On some benchmarks suites (on Cortex-M4F, Cortex-A9, and Cortex-A57)
it gives improvements in the 1-5% range, but in the rest the overall effect is
zero.
Differential Revision: http://reviews.llvm.org/D10966
llvm-svn: 243874
In http://reviews.llvm.org/rL215382, IT forming was made more conservative under
the belief that a flag-setting instruction was unpredictable inside an IT block on ARMv6M.
But actually, ARMv6M doesn't even support IT blocks so that's impossible. In the ARMARM for
v7M, v7AR and v8AR it states that the semantics of such an instruction changes inside an
IT block - it doesn't set the flags. So actually it is fine to use one inside an IT block
as long as the flags register is dead afterwards.
This gives significant performance improvements in a variety of MPEG based workloads.
Differential revision: http://reviews.llvm.org/D11680
llvm-svn: 243869
Summary: This currently sets the shift amount RHS to the same type as the LHS, and assumes that the LHS is a simple type. This isn't currently the case e.g. with weird integers sizes, but will eventually be true and will assert if not. That's what you get for having an experimental backend: break it and you get to keep both pieces. Most backends either set the RHS to MVT::i32 or MVT::i64, but WebAssembly is a virtual ISA and tries to have regular-looking binary operations where both operands are the same type (even if a 64-bit RHS shifter is slightly silly, hey it's free!).
Subscribers: llvm-commits, sunfish, jfb
Differential Revision: http://reviews.llvm.org/D11715
llvm-svn: 243860
Remove some unnecessary explicit special members in Hexagon that, once
removed, allow the other implicit special members to be used without
depending on deprecated features.
llvm-svn: 243825
Summary: Also test 64-bit integers, except shifts for now which are broken because isel dislikes the 32-bit truncate that precedes them.
Reviewers: sunfish
Subscribers: llvm-commits, jfb
Differential Revision: http://reviews.llvm.org/D11699
llvm-svn: 243822
Various targets use std::swap on specific MCAsmOperands (ARM and
possibly Hexagon as well). It might be helpful to mark those subclasses
as final, to ensure that the availability of move/copy operations can't
lead to slicing. (same sort of requirements as the non-vitual dtor -
protected or a final class)
llvm-svn: 243820
This commit fixes a bug in the class 'SIInstrInfo' where the implicit register
machine operands were added to a machine instruction in an incorrect order -
the implicit uses were added before the implicit defs.
I found this bug while working on moving the implicit register operand
verification code from the MIR parser to the machine verifier.
This commit also makes the method 'addImplicitDefUseOperands' in the machine
instruction class public so that it can be reused in the 'SIInstrInfo' class.
Reviewers: Matt Arsenault
Differential Revision: http://reviews.llvm.org/D11689
llvm-svn: 243799
Summary:
For example, in
struct S {
int *x;
int *y;
};
__global__ void foo(S s) {
int *b = s.y;
// use b
}
"b" is guaranteed to point to global. NVPTX should emit ld.global/st.global for
accessing "b".
Reviewers: jholewinski
Subscribers: llvm-commits, jholewinski
Differential Revision: http://reviews.llvm.org/D11505
llvm-svn: 243790
Summary:
Use -1 as numoperands for the return SDTypeProfile, denoting that return is variadic. Note that the patterns in InstrControl.td still need to match the inputs, so this ins't an "anything goes" variadic on ret!
The next step will be to handle other local types (not just int32).
Reviewers: sunfish
Subscribers: llvm-commits, jfb
Differential Revision: http://reviews.llvm.org/D11692
llvm-svn: 243783
Summary:
This prints assembly for int32 integer operations defined in WebAssemblyInstrInteger.td only, with major caveats:
- The operation names are currently incorrect.
- Other integer and floating-point types will be added later.
- The printer isn't factored out to handle recursive AST code yet, since it can't even handle control flow anyways.
- The assembly format isn't full s-expressions yet either, this will be added later.
- This currently disables PrologEpilogCodeInserter as well as MachineCopyPropagation becasue they don't like virtual registers, which WebAssembly likes quite a bit. This will be fixed by factoring out NVPTX's change (currently a fork of PrologEpilogCodeInserter).
Reviewers: sunfish
Subscribers: llvm-commits, jfb
Differential Revision: http://reviews.llvm.org/D11671
llvm-svn: 243763
Add i16, i32, i64 imul machine instructions to the list of reassociation
candidates.
A new bit of logic is needed to handle integer instructions: they have an
implicit EFLAGS operand, so we have to make sure it's dead in order to do
any reassociation with integer ops.
Differential Revision: http://reviews.llvm.org/D11660
llvm-svn: 243756
Summary:
Favor the extended reg patterns over the shifted reg patterns that match
only the operand shift and not the full sign/zero extend and shift.
Reviewers: jmolloy, t.p.northover
Subscribers: mcrosier, aemerson, llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D11569
llvm-svn: 243753
For a modulo (reminder) operation,
clang -target armv7-none-linux-gnueabi generates "__modsi3"
clang -target armv7-none-eabi generates "__aeabi_idivmod"
clang -target armv7-linux-androideabi generates "__modsi3"
Android bionic libc doesn't provide a __modsi3, instead it provides a
"__aeabi_idivmod". This patch fixes the LLVM ARMISelLowering to generate
the correct call when ever there is a modulo operation.
Differential Revision: http://reviews.llvm.org/D11661
llvm-svn: 243717
Fixing MinSize attribute handling was discussed in D11363.
This is a prerequisite patch to doing that.
The handling of OptSize when lowering mem* functions was broken
on Darwin because it wants to ignore -Os for these cases, but the
existing logic also made it ignore -Oz (MinSize).
The Linux change demonstrates a widespread problem. The backend
doesn't usually recognize the MinSize attribute by itself; it
assumes that if the MinSize attribute exists, then the OptSize
attribute must also exist.
Fixing this more generally will be a follow-on patch or two.
Differential Revision: http://reviews.llvm.org/D11568
llvm-svn: 243693
I'm not sure what reasons the comment here could have
had for not setting these. Without these set, there is
an assertion hit during DWARF emission.
llvm-svn: 243661
Copy implementation of applyFixup from AArch64 with AArch64 bits
ripped out.
Tests will be included with a later commit. Several other
problems must be fixed before binary debug info emission
will work.
llvm-svn: 243660
Summary:
Replace the switch on instruction opcode with a switch on register size.
This way we don't need to update the switch statement when we add new
SMRD variants.
Reviewers: arsenm
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11601
llvm-svn: 243652
Summary:
This function is never called. isReallyTriviallyReMaterializable() is
the function that should be implemented instead.
Reviewers: arsenm
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11620
llvm-svn: 243651
Summary:
This hidden option would disable code generation through FastISel by
default. It was removed from the available options and from the
Fast-ISel tests that required it in order to run the tests.
Reviewers: dsanders
Subscribers: qcolombet, llvm-commits
Differential Revision: http://reviews.llvm.org/D11610
llvm-svn: 243638
Summary:
Previously, we would sign-extend non-boolean negative constants and
zero-extend otherwise. This was problematic for PHI instructions with
negative values that had a type with bitwidth less than that of the
register used for materialization.
More specifically, ComputePHILiveOutRegInfo() assumes the constants
present in a PHI node are zero extended in their container and
afterwards deduces the known bits.
For example, previously we would materialize an i16 -4 with the
following instruction:
addiu $r, $zero, -4
The register would end-up with the 32-bit 2's complement representation
of -4. However, ComputePHILiveOutRegInfo() would generate a constant
with the upper 16-bits set to zero. The SelectionDAG builder would use
that information to generate an AssertZero node that would remove any
subsequent trunc & zero_extend nodes.
In theory, we should modify ComputePHILiveOutRegInfo() to consult
target-specific hooks about the way they prefer to materialize the
given constants. However, git-blame reports that this specific code
has not been touched since 2011 and it seems to be working well for every
target so far.
Reviewers: dsanders
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11592
llvm-svn: 243636
Bonus change to remove emacs major mode marker from SystemZMachineFunctionInfo.cpp because emacs already knows it's C++ from the extension. Also fix typo "appeary" in AMDGPUMCAsmInfo.h.
llvm-svn: 243585
This patch improves the 32-bit target i64 constant matching to detect the shuffle vector splats that are introduced by i64 vector shift vectorization (D8416).
Differential Revision: http://reviews.llvm.org/D11327
llvm-svn: 243577
It's potentially more efficient on Cyclone, and from the optimization guides &
schedulers looks like it has no effect on Cortex-A53 or A57. In general you'd
expect a MOV to be about the most efficient instruction with its semantics,
even though the official "UXTW" alias is really a UBFX.
llvm-svn: 243576
This patch vectorizes the v2i64/v4i64 ASHR shift operations - the last remaining integer vector shifts that are still being transferred to/from the scalar unit to be completed.
Differential Revision: http://reviews.llvm.org/D11439
llvm-svn: 243569
No functional change because "lsl #12" is actually encoded as 12, but one less
bug if someone ever decides to change that for the giggles.
llvm-svn: 243536
Given certain shuffle-vector masks, LLVM emits splat instructions
which splat the wrong bytes from the source register. The issue is
that the function PPC::isSplatShuffleMask() in PPCISelLowering.cpp
does not ensure that the splat pattern found is requesting bytes that
are aligned on an EltSize boundary. This patch detects this situation
as not a valid splat mask, resulting in a permute being generated
instead of a splat.
Patch and test case by Tyler Kenney, cleaned up a bit by me.
This is a simple bug fix that would be good to incorporate into 3.7.
llvm-svn: 243519
This commit defines subtarget feature strict-align and uses it instead of
cl::opt -aarch64-strict-align to decide whether strict alignment should be
forced.
rdar://problem/21529937
llvm-svn: 243516
This fix was suggested as part of D11345 and is part of fixing PR24141.
With this change, we can avoid walking the uses of a divisor node if the target
doesn't want the combineRepeatedFPDivisors transform in the first place.
There is no NFC-intended other than that.
Differential Revision: http://reviews.llvm.org/D11531
llvm-svn: 243498
This commit defines subtarget feature strict-align and uses it instead of
cl::opt -arm-strict-align to decide whether strict alignment should be
forced. Also, remove the logic that was checking the OS and architecture
as clang is now responsible for setting strict-align based on the command
line options specified and the target architecute and OS.
rdar://problem/21529937
http://reviews.llvm.org/D11470
llvm-svn: 243493
Reapply 243271 with more fixes; although we are not handling multiple
sources with coalescable copies, we were not properly skipping this
case.
- Teaches the ValueTracker in the PeepholeOptimizer to look through PHI
instructions.
- Add findNextSourceAndRewritePHI method to lookup into multiple sources
returnted by the ValueTracker and rewrite PHIs with new sources.
With these changes we can find more register sources and rewrite more
copies to allow coaslescing of bitcast instructions. Hence, we eliminate
unnecessary VR64 <-> GR64 copies in x86, but it could be extended to
other archs by marking "isBitcast" on target specific instructions. The
x86 example follows:
A:
psllq %mm1, %mm0
movd %mm0, %r9
jmp C
B:
por %mm1, %mm0
movd %mm0, %r9
jmp C
C:
movd %r9, %mm0
pshufw $238, %mm0, %mm0
Becomes:
A:
psllq %mm1, %mm0
jmp C
B:
por %mm1, %mm0
jmp C
C:
pshufw $238, %mm0, %mm0
Differential Revision: http://reviews.llvm.org/D11197
rdar://problem/20404526
llvm-svn: 243486
Summary:
Currently, we support only the MIPS O32 ABI calling convention for call
lowering. With this change we avoid using the O32 calling convetion for
lowering calls marked as using the fast calling convention.
Reviewers: dsanders
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11515
llvm-svn: 243485
Summary:
Generate correct code for the select instruction by zero-extending
it's boolean/condition operand to GPR-width. This is necessary because
the conditional-move instructions operate on the whole register.
Reviewers: dsanders
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11506
llvm-svn: 243469
If the pointer is the store's value operand, this would produce
a broken module. Make sure the use is actually for the pointer operand.
llvm-svn: 243462
Summary: MCAsmInfo is set up with the default AssemblerDialect, which is zero.
Subscribers: llvm-commits, sunfish, jfb
Differential Revision: http://reviews.llvm.org/D11567
llvm-svn: 243452
The 'common' section TLS is not implemented.
Current C/C++ TLS variables are not placed in common section.
DWARF debug info to get the address of TLS variables is not generated yet.
clang and driver changes in http://reviews.llvm.org/D10524
Added -femulated-tls flag to select the emulated TLS model,
which will be used for old targets like Android that do not
support ELF TLS models.
Added TargetLowering::LowerToTLSEmulatedModel as a target-independent
function to convert a SDNode of TLS variable address to a function call
to __emutls_get_address.
Added into lib/Target/*/*ISelLowering.cpp to call LowerToTLSEmulatedModel
for TLSModel::Emulated. Although all targets supporting ELF TLS models are
enhanced, emulated TLS model has been tested only for Android ELF targets.
Modified AsmPrinter.cpp to print the emutls_v.* and emutls_t.* variables for
emulated TLS variables.
Modified DwarfCompileUnit.cpp to skip some DIE for emulated TLS variabls.
TODO: Add proper DIE for emulated TLS variables.
Added new unit tests with emulated TLS.
Differential Revision: http://reviews.llvm.org/D10522
llvm-svn: 243438
Summary:
Add patterns for doing floating point round with various rounding modes
followed by conversion to int as a single FCVT* instruction.
Reviewers: t.p.northover, jmolloy
Subscribers: aemerson, rengolin, mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D11424
llvm-svn: 243422
This path add the aarch64 lowering of __builtin_thread_pointer. It uses
the already implemented AArch64ISD::THREAD_POINTER used in TLS generation.
llvm-svn: 243412
X86FrameLowering has both a mergeSPUpdates() that accepts a direction, and an
mergeSPUpdatesUp(), which seem to do the same thing, except for a slightly
different interface. Removed the less general function.
NFC.
Differential Revision: http://reviews.llvm.org/D11510
llvm-svn: 243396
VPAND is a lot faster than VPSHUFB and VPBLENDVB - this patch ensures we attempt to lower to a basic bitmask before lowering to the slower byte shuffle/blend instructions.
Split off from D11518.
Differential Revision: http://reviews.llvm.org/D11541
llvm-svn: 243395
This is a follow-up to the FIXME that was added with D7474 ( http://reviews.llvm.org/rL229531 ).
I thought this load folding bug had been made hard-to-hit, but it turns out to be very easy
when targeting 32-bit x86 and causes a miscompile/crash in Wine:
https://bugs.winehq.org/show_bug.cgi?id=38826https://llvm.org/bugs/show_bug.cgi?id=22371#c25
The quick fix is to simply remove the scalar FP logical instructions from the load folding table
in X86InstrInfo, but that causes us to miss load folds that should be possible when lowering fabs,
fneg, fcopysign. So the majority of this patch is altering those lowerings to use *vector* FP
logical instructions (because that's all x86 gives us anyway). That lets us do the load folding
legally.
Differential Revision: http://reviews.llvm.org/D11477
llvm-svn: 243361
Summary: WebAssemblySubtarget.cpp expects a default 'generic' CPU to exist, and this seems to be prevalent with other targets. It makes sense to have something between MVP and bleeding-edge, even though for now it's the same as MVP. This removes a warning that's currently generated.
Subscribers: jfb, llvm-commits, sunfish
Differential Revision: http://reviews.llvm.org/D11546
llvm-svn: 243345
be reserved.
The decision to reserve x18 is going to be made solely by the front-end,
so it isn't necessary to check if the OS is Darwin in the backend.
llvm-svn: 243308
There is an ODR conflict between lib/ExecutionEngine/ExecutionEngineBindings.cpp
and lib/Target/TargetMachineC.cpp. The inline definitions should simply
be marked static (thanks dblaikie for the hint).
llvm-svn: 243298
Author: Dave Airlie <airlied@redhat.com>
In order to implement indirect sampler loads, we don't
want to match on a VGPR load but an SGPR one for constants,
as we cannot feed VGPRs to the sampler only SGPRs.
this should be applicable for llvm 3.7 as well.
llvm-svn: 243294
This reverts commit r243146.
Feedback from Craig Topper and David Blaikie was that we don't put const on Type as it has no mutable state.
llvm-svn: 243282
Reapply r242295 with fixes in the implementation.
- Teaches the ValueTracker in the PeepholeOptimizer to look through PHI
instructions.
- Add findNextSourceAndRewritePHI method to lookup into multiple sources
returnted by the ValueTracker and rewrite PHIs with new sources.
With these changes we can find more register sources and rewrite more
copies to allow coaslescing of bitcast instructions. Hence, we eliminate
unnecessary VR64 <-> GR64 copies in x86, but it could be extended to
other archs by marking "isBitcast" on target specific instructions. The
x86 example follows:
A:
psllq %mm1, %mm0
movd %mm0, %r9
jmp C
B:
por %mm1, %mm0
movd %mm0, %r9
jmp C
C:
movd %r9, %mm0
pshufw $238, %mm0, %mm0
Becomes:
A:
psllq %mm1, %mm0
jmp C
B:
por %mm1, %mm0
jmp C
C:
pshufw $238, %mm0, %mm0
Differential Revision: http://reviews.llvm.org/D11197
rdar://problem/20404526
llvm-svn: 243271
Summary:
Fix the cost of interleaved accesses for ARM/AArch64.
We were calling getTypeAllocSize and using it to check
the number of bits, when we should have called
getTypeAllocSizeInBits instead.
This would pottentially cause the vectorizer to
generate loads/stores and shuffles which cannot
be matched with an interleaved access instruction.
No performance changes are expected for now since
matching/generating interleaved accesses is still
disabled by default.
Reviewers: rengolin
Subscribers: aemerson, llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D11524
llvm-svn: 243270