Rather than having arbitrary cutoffs, actually try to cost model the conversion.
For now, the constants are tuned to more or less match our existing behavior, but these will be
changed to reflect realistic values as this work proceeds.
llvm-svn: 114973
take multiple cycles to decode.
For the current if-converter clients (actually only ARM), the instructions that
are predicated on false are not nops. They would still take machine cycles to
decode. Micro-coded instructions such as LDM / STM can potentially take multiple
cycles to decode. If-converter should take treat them as non-micro-coded
simple instructions.
llvm-svn: 113570
There are 2 changes relative to the previous version of the patch:
1) For the "simple" if-conversion case, there's no need to worry about
RemoveExtraEdges not handling an unanalyzable branch. Predicated terminators
are ignored in this context, so RemoveExtraEdges does the right thing.
This might break someday if we ever treat indirect branches (BRIND) as
predicable, but for now, I just removed this part of the patch, because
in the case where we do not add an unconditional branch, we rely on keeping
the fall-through edge to CvtBBI (which is empty after this transformation).
The change relative to the previous patch is:
@@ -1036,10 +1036,6 @@
IterIfcvt = false;
}
- // RemoveExtraEdges won't work if the block has an unanalyzable branch,
- // which is typically the case for IfConvertSimple, so explicitly remove
- // CvtBBI as a successor.
- BBI.BB->removeSuccessor(CvtBBI->BB);
RemoveExtraEdges(BBI);
// Update block info. BB can be iteratively if-converted.
2) My patch exposed a bug in the code for merging the tail of a "diamond",
which had previously never been exercised. The code was simply checking that
the tail had a single predecessor, but there was a case in
MultiSource/Benchmarks/VersaBench/dbms where that single predecessor was
neither edge of the diamond. I added the following change to check for
that:
@@ -1276,7 +1276,18 @@
// tail, add a unconditional branch to it.
if (TailBB) {
BBInfo TailBBI = BBAnalysis[TailBB->getNumber()];
- if (TailBB->pred_size() == 1 && !TailBBI.HasFallThrough) {
+ bool CanMergeTail = !TailBBI.HasFallThrough;
+ // There may still be a fall-through edge from BBI1 or BBI2 to TailBB;
+ // check if there are any other predecessors besides those.
+ unsigned NumPreds = TailBB->pred_size();
+ if (NumPreds > 1)
+ CanMergeTail = false;
+ else if (NumPreds == 1 && CanMergeTail) {
+ MachineBasicBlock::pred_iterator PI = TailBB->pred_begin();
+ if (*PI != BBI1->BB && *PI != BBI2->BB)
+ CanMergeTail = false;
+ }
+ if (CanMergeTail) {
MergeBlocks(BBI, TailBBI);
TailBBI.IsDone = true;
} else {
With these fixes, I was able to run all the SingleSource and MultiSource
tests successfully.
llvm-svn: 107110
if-conversion. The RemoveExtraEdges function doesn't work for blocks that
end with unanalyzable branches, so in those cases, the "extra" edges must
be explicitly removed. The CopyAndPredicateBlock and MergeBlocks methods
can also avoid copying successor edges due to branches that have already
been removed. The latter case is especially helpful when MergeBlocks is
called for handling "diamond" if-conversions, where otherwise you can end
up with some weird intermediate states in the CFG. Unfortunately I've
been unable to find cases where this cleanup actually makes a significant
difference in the code. There is one test where we manage to remove an
empty block at the end of a function. Radar 6911268.
llvm-svn: 106939
- This fixed a number of bugs in if-converter, tail merging, and post-allocation
scheduler. If-converter now runs branch folding / tail merging first to
maximize if-conversion opportunities.
- Also changed the t2IT instruction slightly. It now defines the ITSTATE
register which is read by instructions in the IT block.
- Added Thumb2 specific hazard recognizer to ensure the scheduler doesn't
change the instruction ordering in the IT block (since IT mask has been
finalized). It also ensures no other instructions can be scheduled between
instructions in the IT block.
This is not yet enabled.
llvm-svn: 106344
so when IfConverter::CopyAndPredicateBlock checks to see if it should ignore
an instruction because it is a branch, it should not check if the branch is
predicated.
This case (when IgnoreBr is true) is only relevant from IfConvertTriangle,
where new branches are inserted after the block has been copied and predicated.
If the original branch is not removed, we end up with multiple conditional
branches (possibly conflicting) at the end of the block. Aside from any
immediate errors resulting from that, this confuses the AnalyzeBranch functions
so that the branches are not analyzable. That in turn causes the IfConverter to
think that the "Simple" pattern can be applied, and things go downhill fast
because the "Simple" pattern does _not_ apply if the block can fall through.
This is pretty fragile. If there are other degenerate cases where AnalyzeBranch
fails, but where the block may still fall through, the IfConverter should not
perform its "Simple" if-conversion. But, I don't know how to do that with the
current AnalyzeBranch interface, so for now, the best thing seems to be to
avoid creating branches that AnalyzeBranch cannot handle.
Evan, please review!
llvm-svn: 106291
addresses a longstanding deficiency noted in many FIXMEs scattered
across all the targets.
This effectively moves the problem up one level, replacing eleven
FIXMEs in the targets with eight FIXMEs in CodeGen, plus one path
through FastISel where we actually supply a DebugLoc, fixing Radar
7421831.
llvm-svn: 106243
use it to control tail merging when there is a tradeoff between performance
and code size. When there is only 1 instruction in the common tail, we have
been merging. That can be good for code size but is a definite loss for
performance. Now we will avoid tail merging in that case when the
optimization level is "Aggressive", i.e., "-O3". Radar 7338114.
Since the IfConversion pass invokes BranchFolding, it too needs to know
the optimization level. Note that I removed the RegisterPass instantiation
for IfConversion because it required a default constructor. If someone
wants to keep that for some reason, we can add a default constructor with
a hard-wired optimization level.
llvm-svn: 85346
MachineInstr and MachineOperand. This required eliminating a
bunch of stuff that was using DOUT, I hope that bill doesn't
mind me stealing his fun. ;-)
llvm-svn: 79813
- Some clients which used DOUT have moved to DEBUG. We are deprecating the
"magic" DOUT behavior which avoided calling printing functions when the
statement was disabled. In addition to being unnecessary magic, it had the
downside of leaving code in -Asserts builds, and of hiding potentially
unnecessary computations.
llvm-svn: 77019
This adds location info for all llvm_unreachable calls (which is a macro now) in
!NDEBUG builds.
In NDEBUG builds location info and the message is off (it only prints
"UREACHABLE executed").
llvm-svn: 75640
block with its unique predecessor. Change the code to assert if that is not
the case, instead of trying to handle situations where the block has
multiple predecessors.
llvm-svn: 71744
Dan was trying to catch the case where a basic block ends with a conditional
branch to the fall-through block. In this case, all the instructions have
been moved out of FromBBI, leaving it empty. It cannot end with a
conditional branch. As the existing comment indicates, it will always fall
through to the next block. If the block already had the next block (NBB)
listed as a successor, the preceding loop has a check for that and does not
remove it. Thus, we need to check and add the successor only when it is
not already listed.
With Dan's change, the empty block often ends up with the fall-through
successor listed twice. This exposed the problem in pr4195, where
CodePlacementOpt did not handle the same predecessor listed more than once.
It is also at least partially responsible for pr4202 and probably a similar
issue with Thumb branches being out of range.
llvm-svn: 71742