The XFAIL started passing since we're only testing for trivial-copyability of
reference_wrapper in C++14 and above. This commit constrains the XFAIL to
gcc-4.9 with C++14 (it would also fail on C++17 and above, but those standards
are not available with GCC 4.9).
llvm-svn: 347264
popRegions used to assume that the start location of a region can't be
nested deeper than the end location, which is not always true.
Patch by Orivej Desh!
Differential Revision: https://reviews.llvm.org/D53244
llvm-svn: 347262
If PerformConstructorInitialization of a direct initializer list constructor is
called while instantiating a template, it has brace locations in its BraceLoc
arguments but not in the Kind argument.
This reverts the hunk https://reviews.llvm.org/D41921#inline-468844.
Patch by Orivej Desh!
Differential Revision: https://reviews.llvm.org/D53231
llvm-svn: 347261
This works if DAG combiner is enabled, but without combining
we cannot select scalar_to_vector of <2 x half> and <2 x i16>.
Differential Revision: https://reviews.llvm.org/D54718
llvm-svn: 347259
Summary:
As reported by @regehr (thanks!) on twitter (https://twitter.com/johnregehr/status/1057681496255815686),
we (me) has completely forgot about the binary assignment operator.
In AST, it isn't represented as separate `ImplicitCastExpr`'s,
but as a single `CompoundAssignOperator`, that does all the casts internally.
Which means, out of these two, only the first one is diagnosed:
```
auto foo() {
unsigned char c = 255;
c = c + 1;
return c;
}
auto bar() {
unsigned char c = 255;
c += 1;
return c;
}
```
https://godbolt.org/z/JNyVc4
This patch does handle the `CompoundAssignOperator`:
```
int main() {
unsigned char c = 255;
c += 1;
return c;
}
```
```
$ ./bin/clang -g -fsanitize=integer /tmp/test.c && ./a.out
/tmp/test.c:3:5: runtime error: implicit conversion from type 'int' of value 256 (32-bit, signed) to type 'unsigned char' changed the value to 0 (8-bit, unsigned)
#0 0x2392b8 in main /tmp/test.c:3:5
#1 0x7fec4a612b16 in __libc_start_main (/lib/x86_64-linux-gnu/libc.so.6+0x22b16)
#2 0x214029 in _start (/build/llvm-build-GCC-release/a.out+0x214029)
```
However, the pre/post increment/decrement is still not handled.
Reviewers: rsmith, regehr, vsk, rjmccall, #sanitizers
Reviewed By: rjmccall
Subscribers: mclow.lists, cfe-commits, regehr
Tags: #clang, #sanitizers
Differential Revision: https://reviews.llvm.org/D53949
llvm-svn: 347258
Add methods to BasicBlock which make it easier to efficiently check
whether a block has N (or more) predecessors.
This can be more efficient than using pred_size(), which is a linear
time operation.
We might consider adding similar methods for successors. I haven't done
so in this patch because succ_size() is already O(1).
With this patch applied, I measured a 0.065% compile-time reduction in
user time for running `opt -O3` on the sqlite3 amalgamation (30 trials).
The change in mergeStoreIntoSuccessor alone saves 45 million linked list
iterations in a stage2 Release build of llc.
See llvm.org/PR39702 for a harder but more general way of achieving
similar results.
Differential Revision: https://reviews.llvm.org/D54686
llvm-svn: 347256
Consistently use (!LegalOperations || isOperationLegalOrCustom) for all node pairs.
Differential Revision: https://reviews.llvm.org/D53478
llvm-svn: 347255
Otherwise, the clang analyzer tests fail on Windows when attempting to
unpickle AnalyzerTest objects in the worker processes. The pattern of,
add to path, import, remove from path, serialize, deserialize, doesn't
work. Once something gets added to the path, if we want to move it
across the wire for multiprocessing, we need to keep the module on
sys.path.
llvm-svn: 347254
As discussed on D53794, for float types with ranges smaller than the destination integer type, then we should be able to just use a regular FP_TO_SINT opcode.
I thought we'd need to provide MSA test cases for very small integer types as well (fp16 -> i8 etc.), but it turns out that promotion will kick in so they're unnecessary.
Differential Revision: https://reviews.llvm.org/D54703
llvm-svn: 347251
We're seeing some issues internally where we sent some intrinsics into the cost model that the getTypeLegalizationCost call fails on, but X86 specific tables don't care about. Our base class implementation takes care of them. We'd just like X86 backend to ignore them.
This patch makes sure the switch returned something X86 cares about and skips the table lookups and type legalization call if not. Probably more efficient too since we don't go scanning the tables for every intrinsic we could possibly see.
Differential Revision: https://reviews.llvm.org/D54711
llvm-svn: 347248
Summary: In order to invoke sed on Windows, we need to quote the command correctly. Since we already have commands which do that, move the definitions at the beginning of the file and then re-use them for each command.
Reviewers: aprantl, zturner
Subscribers: teemperor, lldb-commits
Differential Revision: https://reviews.llvm.org/D54709
llvm-svn: 347243
SSE PSHUFB vector ctlz lowering works at the i4 nibble level. As detailed in PR39703, we were masking the lower nibble off but we only actually use it in the case where the upper nibble is known to be zero, making it safe to remove the mask and save an instruction.
Differential Revision: https://reviews.llvm.org/D54707
llvm-svn: 347242
Previously we split the vectors in half to allow the two halves to be any extended then concatenated the results back together.
This patch instead instead extends the v16i8 sse algorithm to extend half of each 128-bit lane using punpcklbw/punpckhbw. Multiplies all the low half lanes and high half lanes together in separate operations. Then merges the half lane results back together using packuswb.
Unfortunately, some of the cases in vector-reduce-mul.ll regress because we aren't narrowing the vector width of the multiplies as we reduce. The splitting was somewhat making up for that before by causing halves to be discarded after the split.
Differential Revision: https://reviews.llvm.org/D54668
llvm-svn: 347240
This will hold flags specific to subprograms. In the future
we could potentially free up scarce bits in DIFlags by moving
subprogram-specific flags from there to the new flags word.
This patch does not change IR/bitcode formats, that will be
done in a follow-up.
Differential Revision: https://reviews.llvm.org/D54597
llvm-svn: 347239
Summary:
Puts the digest of the source file that generated the index into
serialized index and stores them back on load, if exists.
Reviewers: sammccall
Subscribers: ilya-biryukov, ioeric, MaskRay, jkorous, arphaman, cfe-commits
Differential Revision: https://reviews.llvm.org/D54693
llvm-svn: 347235
Some tests use type std::max_align_t, but don't include <cstddef> header
directly. As a result, these tests won't compile against some conformant
libraries.
Reviewed as https://reviews.llvm.org/D54645.
Thanks to Andrey Maksimov for the patch.
llvm-svn: 347232
This allows to avoid scratch use or indirect VGPR addressing for
small vectors.
Differential Revision: https://reviews.llvm.org/D54606
llvm-svn: 347231
MachOObjectFile::getHostArch() returns a temporary, and getArchName
returns a StringRef pointing to a temporary std::string.
No tests since it doesn't trigger any errors except with the sanitizers.
llvm-svn: 347230
Summary:
This makes it easier/cleaner to generate a single signature from
this directive. Also:
- Adds the symbol name, such that we don't depend on the location
of this directive anymore.
- Actually constructs the signature in the assembler, and make the
assembler own it.
- Refactor the use of MVT vs ValType in the streamer and assembler
to require less conversions overall.
- Changed 700 or so tests to use it.
Reviewers: sbc100, dschuff
Subscribers: jgravelle-google, eraman, aheejin, sunfish, jfb, llvm-commits
Differential Revision: https://reviews.llvm.org/D54652
llvm-svn: 347228
Summary:
AMDGPUAsmPrinter has a getSTI function that derives a GCNSubtarget from the
TM. However, this means that overridden target features are not detected and can
result in incorrect behaviour.
Switch to using STM which is a GCNSubtarget derived from the MF (used elsewhere
in the same function).
Change-Id: Ib6328ad667b7fcdc87e9c06344e59859207db9b0
Subscribers: arsenm, kzhuravl, jvesely, wdng, nhaehnle, yaxunl, tpr, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D54301
llvm-svn: 347221
Summary:
Currently, when vectorizing stores to uniform addresses, the only
instance we prevent vectorization is if there are multiple stores to the
same uniform address causing an unsafe dependency.
This patch teaches LAA to avoid vectorizing loops that have an unsafe
cross-iteration dependency between a load and a store to the same uniform address.
Fixes PR39653.
Reviewers: Ayal, efriedma
Subscribers: rkruppe, llvm-commits
Differential Revision: https://reviews.llvm.org/D54538
llvm-svn: 347220
Recently I tried to port LLDB's lit configuration files over to use a
on the surface, but broke some cases that weren't broken before and also
exposed some additional problems with the old approach that we were just
getting lucky with.
When we set up a lit environment, the goal is to make it as hermetic as
possible. We should not be relying on PATH and enabling the use of
arbitrary shell commands. Instead, only whitelisted commands should be
allowed. These are, generally speaking, the lit builtins such as echo,
cd, etc, as well as anything for which substitutions have been
explicitly set up for. These substitutions should map to the build
output directory, but in some cases it's useful to be able to override
this (for example to point to an installed tools directory).
This is, of course, how it's supposed to work. What was actually
happening is that we were bringing in PATH and LD_LIBRARY_PATH and then
just running the given run line as a shell command. This led to problems
such as finding the wrong version of clang-cl on PATH since it wasn't
even a substitution, and flakiness / non-determinism since the
environment the tests were running in would change per-machine. On the
other hand, it also made other things possible. For example, we had some
tests that were explicitly running cl.exe and link.exe instead of
clang-cl and lld-link and the only reason it worked at all is because it
was finding them on PATH. Unfortunately we can't entirely get rid of
these tests, because they support a few things in debug info that
clang-cl and lld-link don't (notably, the LF_UDT_MOD_SRC_LINE record
which makes some of the tests fail.
The high level changes introduced in this patch are:
1. Removal of functionality - The lit test suite no longer respects
LLDB_TEST_C_COMPILER and LLDB_TEST_CXX_COMPILER. This means there is no
more support for gcc, but nobody was using this anyway (note: The
functionality is still there for the dotest suite, just not the lit test
suite). There is no longer a single substitution %cxx and %cc which maps
to <arbitrary-compiler>, you now explicitly specify the compiler with a
substitution like %clang or %clangxx or %clang_cl. We can revisit this
in the future when someone needs gcc.
2. Introduction of the LLDB_LIT_TOOLS_DIR directory. This does in spirit
what LLDB_TEST_C_COMPILER and LLDB_TEST_CXX_COMPILER used to do, but now
more friendly. If this is not specified, all tools are expected to be
the just-built tools. If it is specified, the tools which are not
themselves being tested but are being used to construct and run checks
(e.g. clang, FileCheck, llvm-mc, etc) will be searched for in this
directory first, then the build output directory.
3. Changes to core llvm lit files. The use_lld() and use_clang()
functions were introduced long ago in anticipation of using them in
lldb, but since they were never actually used anywhere but their
respective problems, there were some issues to be resolved regarding
generality and ability to use them outside their project.
4. Changes to .test files - These are all just replacing things like
clang-cl with %clang_cl and %cxx with %clangxx, etc.
5. Changes to lit.cfg.py - Previously we would load up some system
environment variables and then add some new things to them. Then do a
bunch of work building out our own substitutions. First, we delete the
system environment variable code, making the environment hermetic. Then,
we refactor the substitution logic into two separate helper functions,
one which sets up substitutions for the tools we want to test (which
must come from the build output directory), and another which sets up
substitutions for support tools (like compilers, etc).
6. New substitutions for MSVC -- Previously we relied on location of
MSVC by bringing in the entire parent's PATH and letting
subprocess.Popen just run the command line. Now we set up real
substitutions that should have the same effect. We use PATH to find
them, and then look for INCLUDE and LIB to construct a substitution
command line with appropriate /I and /LIBPATH: arguments. The nice thing
about this is that it opens the door to having separate %msvc-cl32 and
%msvc-cl64 substitutions, rather than only requiring the user to run
vcvars first. Because we can deduce the path to 32-bit libraries from
64-bit library directories, and vice versa. Without these substitutions
this would have been impossible.
Differential Revision: https://reviews.llvm.org/D54567
llvm-svn: 347216
Legacy loop pass manager is issuing "Made Modification" message after each Loop Pass
run, however condition for issuing it is accumulated among all the runs.
That leads to confusing 'modification' messages as soon as the first modification is done.
Changing condition to be "current pass made modifications", similar to how
it is being done in all other pass managers.
llvm-svn: 347215