A long time ago we start with clang types that were created by the symbol files and there were many functions in lldb_private::ClangASTContext that helped. Later we create ClangASTType which contains a clang::ASTContext and an opauque QualType, but we didn't switch over to fully using it. There were a lot of places where we would pass around a raw clang_type_t and also pass along a clang::ASTContext separately. This left room for error.
This checkin change all type code over to use ClangASTType everywhere and I cleaned up the interfaces quite a bit. Any code that was in ClangASTContext that was type related, was moved over into ClangASTType. All code that used these types was switched over to use all of the new goodness.
llvm-svn: 186130
expressions.
Previously, ClangUserExpression assumed that if
there was a constant result for an expression
then it could be determined during parsing. In
particular, the IRInterpreter ran while parser
state (in particular, ClangExpressionDeclMap)
was present. This approach is flawed, because
the IRInterpreter actually is capable of using
external variables, and hence the result might
be different each run. Until now, we papered
over this flaw by re-parsing the expression each
time we ran it.
I have rewritten the IRInterpreter to be
completely independent of the ClangExpressionDeclMap.
Instead of special-casing external variable lookup,
which ties the IRInterpreter closely to LLDB,
we now interpret the exact same IR that the JIT
would see. This IR assumes that materialization
has occurred; hence the recent implementation of the
Materializer, which does not require parser state
(in the form of ClangExpressionDeclMap) to be
present.
Materialization, interpretation, and dematerialization
are now all independent of parsing. This means that
in theory we can parse expressions once and run them
many times. I have three outstanding tasks before
shutting this down:
- First, I will ensure that all of this works with
core files. Core files have a Process but do not
allow allocating memory, which currently confuses
materialization.
- Second, I will make expression breakpoint
conditions remember their ClangUserExpression and
re-use it.
- Third, I will tear out all the redundant code
(for example, materialization logic in
ClangExpressionDeclMap) that is no longer used.
While implementing this fix, I also found a bug in
IRForTarget's handling of floating-point constants.
This should be fixed.
llvm-svn: 179801
from IRExecutionUnit into a superclass called
IRMemoryMap. IRMemoryMap handles all reading and
writing, ensuring that areas are kept track of and
memory is properly cached (and deleted).
Also fixed several cases where we would simply leak
binary data in the target process over time. Now
the expression objects explicitly own their
IRExecutionUnit and delete it when they go away. This
is why I had to modify ClangUserExpression,
ClangUtilityFunction, and ClangFunction.
As a side effect of this, I am removing the JIT
mutex for an IRMemoryMap. If it turns out that we
need this mutex, I'll add it in then, but right now
it's just adding complexity.
This is part of a more general project to make
expressions fully reusable. The next step is to
make materialization and dematerialization use
the IRMemoryMap API rather than writing and
reading directly from the process's memory.
This will allow the IR interpreter to use the
same data, but in the host's memory, without having
to use a different set of pointers.
llvm-svn: 178832
LLDB is crashing when logging is enabled from lldb-perf-clang. This has to do with the global destructor chain as the process and its threads are being torn down.
All logging channels now make one and only one instance that is kept in a global pointer which is never freed. This guarantees that logging can correctly continue as the process tears itself down.
llvm-svn: 178191
and the JITted code are managed by a standalone
class that handles memory management itself.
I have removed RecordingMemoryManager and
ProcessDataAllocator, which filled similar roles
and had confusing ownership, with a common class
called IRExecutionUnit. The IRExecutionUnit
manages all allocations ever made for an expression
and frees them when it goes away. It also contains
the code generator and can vend the Module for an
expression to other clases.
The end goal here is to make the output of the
expression parser re-usable; that is, to avoid
re-parsing when re-parsing isn't necessary.
I've also cleaned up some code and used weak pointers
in more places. Please let me know if you see any
leaks; I checked myself as well but I might have
missed a case.
llvm-svn: 177364
Major fixed to allow reading files that are over 4GB. The main problems were that the DataExtractor was using 32 bit offsets as a data cursor, and since we mmap all of our object files we could run into cases where if we had a very large core file that was over 4GB, we were running into the 4GB boundary.
So I defined a new "lldb::offset_t" which should be used for all file offsets.
After making this change, I enabled warnings for data loss and for enexpected implicit conversions temporarily and found a ton of things that I fixed.
Any functions that take an index internally, should use "size_t" for any indexes and also should return "size_t" for any sizes of collections.
llvm-svn: 173463
controlled by the --unwind-on-error flag, and --ignore-breakpoint which separately controls behavior when a called
function hits a breakpoint. For breakpoints, we don't unwind, we either stop, or ignore the breakpoint, which makes
more sense.
Also make both these behaviors globally settable through "settings set".
Also handle the case where a breakpoint command calls code that ends up re-hitting the breakpoint. We were recursing
and crashing. Now we just stop without calling the second command.
<rdar://problem/12986644>
<rdar://problem/9119325>
llvm-svn: 172503
migration in r171366.
I don't know anything about lldb, but a force run of the build bot indicated it
would need this patch. I'll try to watch the build bot to get it green.
llvm-svn: 171374
Fixed type lookups to "do the right thing". Prior to this fix, looking up a type using "foo::bar" would result in a type list that contains all types that had "bar" as a basename unless the symbol file was able to match fully qualified names (which our DWARF parser does not).
This fix will allow type matches to be made based on the basename and then have the types that don't match filtered out. Types by name can be fully qualified, or partially qualified with the new "bool exact_match" parameter to the Module::FindTypes() method.
This fixes some issue that we discovered with dynamic type resolution as well as improves the overall type lookups in LLDB.
llvm-svn: 153482
I started work on being able to add symbol files after a debug session
had started with a new "target symfile add" command and quickly ran into
problems with stale Address objects in breakpoint locations that had
lldb_private::Section pointers into modules that had been removed or
replaced. This also let to grabbing stale modules from those sections.
So I needed to thread harded the Address, Section and related objects.
To do this I modified the ModuleChild class to now require a ModuleSP
on initialization so that a weak reference can created. I also changed
all places that were handing out "Section *" to have them hand out SectionSP.
All ObjectFile, SymbolFile and SymbolVendors were inheriting from ModuleChild
so all of the find plug-in, static creation function and constructors now
require ModuleSP references instead of Module *.
Address objects now have weak references to their sections which can
safely go stale when a module gets destructed.
This checkin doesn't complete the "target symfile add" command, but it
does get us a lot clioser to being able to do such things without a high
risk of crashing or memory corruption.
llvm-svn: 151336
the lldb_private::StackFrame objects hold onto a weak pointer to the thread
object. The lldb_private::StackFrame objects the the most volatile objects
we have as when we are doing single stepping, frames can often get lost or
thrown away, only to be re-created as another object that still refers to the
same frame. We have another bug tracking that. But we need to be able to
have frames no longer be able to get the thread when they are not part of
a thread anymore, and this is the first step (this fix makes that possible
but doesn't implement it yet).
Also changed lldb_private::ExecutionContextScope to return shared pointers to
all objects in the execution context to further thread harden the internals.
llvm-svn: 150871
due to RTTI worries since llvm and clang don't use RTTI, but I was able to
switch back with no issues as far as I can tell. Once the RTTI issue wasn't
an issue, we were looking for a way to properly track weak pointers to objects
to solve some of the threading issues we have been running into which naturally
led us back to std::tr1::weak_ptr. We also wanted the ability to make a shared
pointer from just a pointer, which is also easily solved using the
std::tr1::enable_shared_from_this class.
The main reason for this move back is so we can start properly having weak
references to objects. Currently a lldb_private::Thread class has a refrence
to its parent lldb_private::Process. This doesn't work well when we now hand
out a SBThread object that contains a shared pointer to a lldb_private::Thread
as this SBThread can be held onto by external clients and if they end up
using one of these objects we can easily crash.
So the next task is to start adopting std::tr1::weak_ptr where ever it makes
sense which we can do with lldb_private::Debugger, lldb_private::Target,
lldb_private::Process, lldb_private::Thread, lldb_private::StackFrame, and
many more objects now that they are no longer using intrusive ref counted
pointer objects (you can't do std::tr1::weak_ptr functionality with intrusive
pointers).
llvm-svn: 149207
Switch from GetReturnValue, which was hardly ever used, to GetReturnValueObject
which is much more convenient.
Return the "return value object" as a persistent variable if requested.
llvm-svn: 147157
shared pointers.
Changed the ExecutionContext over to use shared pointers for
the target, process, thread and frame since these objects can
easily go away at any time and any object that was holding onto
an ExecutionContext was running the risk of using a bad object.
Now that the shared pointers for target, process, thread and
frame are just a single pointer (they all use the instrusive
shared pointers) the execution context is much safer and still
the same size.
Made the shared pointers in the the ExecutionContext class protected
and made accessors for all of the various ways to get at the pointers,
references, and shared pointers.
llvm-svn: 140298
stdarg formats to use __attribute__ format so the compiler can flag
incorrect uses. Fix all incorrect uses. Most of these are innocuous,
a few were resulting in crashes.
llvm-svn: 140185
to execute expressions even in the absence of a process.
This allows expressions to run in situations where the
target cannot run -- e.g., to perform calculations based
on type information, or to inspect a binary's static
data.
This modification touches the following files:
lldb-private-enumerations.h
Introduce a new enum specifying the policy for
processing an expression. Some expressions should
always be JITted, for example if they are functions
that will be used over and over again. Some
expressions should always be interpreted, for
example if the target is unsafe to run. For most,
it is acceptable to JIT them, but interpretation
is preferable when possible.
Target.[h,cpp]
Have EvaluateExpression now accept the new enum.
ClangExpressionDeclMap.[cpp,h]
Add support for the IR interpreter and also make
the ClangExpressionDeclMap more robust in the
absence of a process.
ClangFunction.[cpp,h]
Add support for the new enum.
IRInterpreter.[cpp,h]
New implementation.
ClangUserExpression.[cpp,h]
Add support for the new enum, and for running
expressions in the absence of a process.
ClangExpression.h
Remove references to the old DWARF-based method
of evaluating expressions, because it has been
superseded for now.
ClangUtilityFunction.[cpp,h]
Add support for the new enum.
ClangExpressionParser.[cpp,h]
Add support for the new enum, remove references
to DWARF, and add support for checking whether
the expression could be evaluated statically.
IRForTarget.[h,cpp]
Add support for the new enum, and add utility
functions to support the interpreter.
IRToDWARF.cpp
Removed
CommandObjectExpression.cpp
Remove references to the obsolete -i option.
Process.cpp
Modify calls to ClangUserExpression::Evaluate
to pass the correct enum (for dlopen/dlclose)
SBValue.cpp
Add support for the new enum.
SBFrame.cpp
Add support for he new enum.
BreakpointOptions.cpp
Add support for the new enum.
llvm-svn: 139772
cause extra shared pointer references to one or more modules to be leaked.
This would cause many object files to stay around the life of LLDB, so after
a recompile and rexecution, we would keep adding more and more memory. After
fixing the leak, we found many cases where leaked stack frames were still
being used and causing crashes in the test suite. These are now all resolved.
llvm-svn: 137516
"struct ", "class ", and "union " from the start of any type names that are
extracted from clang QualType objects. I had to fix test suite cases that
were expecting the struct/union/class prefix to be there.
llvm-svn: 134132
into the mainline LLDB codebase. MCJIT introduces
API improvements and better architectural support.
This commit adds a new subsystem, the
ProcessDataAllocator, which is responsible for
performing static data allocations on behalf of the
IR transformer. MCJIT currently does not support
the relocations required to store the constant pool
in the same allocation as the function body, so we
allocate a heap region separately and redirect
static data references from the expression to that
heap region in a new IR modification pass.
This patch also fixes bugs in the IR
transformations that were exposed by the transition
to the MCJIT. Finally, the patch also pulls in a
more recent revision of LLVM so that the MCJIT is
available for use.
llvm-svn: 131923
of duplicated code from appearing all over LLDB:
lldb::addr_t
Process::ReadPointerFromMemory (lldb::addr_t vm_addr, Error &error);
bool
Process::WritePointerToMemory (lldb::addr_t vm_addr, lldb::addr_t ptr_value, Error &error);
size_t
Process::ReadScalarIntegerFromMemory (lldb::addr_t addr, uint32_t byte_size, bool is_signed, Scalar &scalar, Error &error);
size_t
Process::WriteScalarToMemory (lldb::addr_t vm_addr, const Scalar &scalar, uint32_t size, Error &error);
in lldb_private::Process the following functions were renamed:
From:
uint64_t
Process::ReadUnsignedInteger (lldb::addr_t load_addr,
size_t byte_size,
Error &error);
To:
uint64_t
Process::ReadUnsignedIntegerFromMemory (lldb::addr_t load_addr,
size_t byte_size,
uint64_t fail_value,
Error &error);
Cleaned up a lot of code that was manually doing what the above functions do
to use the functions listed above.
Added the ability to get a scalar value as a buffer that can be written down
to a process (byte swapping the Scalar value if needed):
uint32_t
Scalar::GetAsMemoryData (void *dst,
uint32_t dst_len,
lldb::ByteOrder dst_byte_order,
Error &error) const;
The "dst_len" can be smaller that the size of the scalar and the least
significant bytes will be written. "dst_len" can also be larger and the
most significant bytes will be padded with zeroes.
Centralized the code that adds or removes address bits for callable and opcode
addresses into lldb_private::Target:
lldb::addr_t
Target::GetCallableLoadAddress (lldb::addr_t load_addr, AddressClass addr_class) const;
lldb::addr_t
Target::GetOpcodeLoadAddress (lldb::addr_t load_addr, AddressClass addr_class) const;
All necessary lldb_private::Address functions now use the target versions so
changes should only need to happen in one place if anything needs updating.
Fixed up a lot of places that were calling :
addr_t
Address::GetLoadAddress(Target*);
to call the Address::GetCallableLoadAddress() or Address::GetOpcodeLoadAddress()
as needed. There were many places in the breakpoint code where things could
go wrong for ARM if these weren't used.
llvm-svn: 131878
variables be evaluated statically.
Also fixed a bug that caused the results of
statically-evaluated expressions to be materialized
improperly.
This bug also removes some duplicate code.
llvm-svn: 131042
public types and public enums. This was done to keep the SWIG stuff from
parsing all sorts of enums and types that weren't needed, and allows us to
abstract our API better.
llvm-svn: 128239
clang_type_t
GetClangFullType(); // Get a completely defined clang type
clang_type_t
GetClangLayoutType(); // Get a clang type that can be used for type layout
clang_type_t
GetClangForwardType(); // A type that can be completed if needed, but is more efficient.
llvm-svn: 125691
now, in addition to cpu type/subtype and architecture flavor, contains:
- byte order (big endian, little endian)
- address size in bytes
- llvm::Triple for true target triple support and for more powerful plug-in
selection.
llvm-svn: 125602
values or persistent expression variables. Now if an expression consists of
a value that is a child of a variable, or of a persistent variable only, we
will create a value object for it and make a ValueObjectConstResult from it to
freeze the value (for program variables only, not persistent variables) and
avoid running JITed code. For everything else we still parse up and JIT code
and run it in the inferior.
There was also a lot of clean up in the expression code. I made the
ClangExpressionVariables be stored in collections of shared pointers instead
of in collections of objects. This will help stop a lot of copy constructors on
these large objects and also cleans up the code considerably. The persistent
clang expression variables were moved over to the Target to ensure they persist
across process executions.
Added the ability for lldb_private::Target objects to evaluate expressions.
We want to evaluate expressions at the target level in case we aren't running
yet, or we have just completed running. We still want to be able to access the
persistent expression variables between runs, and also evaluate constant
expressions.
Added extra logging to the dynamic loader plug-in for MacOSX. ModuleList objects
can now dump their contents with the UUID, arch and full paths being logged with
appropriate prefix values.
Thread hardened the Communication class a bit by making the connection auto_ptr
member into a shared pointer member and then making a local copy of the shared
pointer in each method that uses it to make sure another thread can't nuke the
connection object while it is being used by another thread.
Added a new file to the lldb/test/load_unload test that causes the test a.out file
to link to the libd.dylib file all the time. This will allow us to test using
the DYLD_LIBRARY_PATH environment variable after moving libd.dylib somewhere else.
llvm-svn: 121745
access to the members of the Objective-C self object.
The approach we take is to generate the method as a
@category on top of the self object, and to pass the
"self" pointer to it. (_cmd is currently NULL.)
Most changes are in ClangExpressionDeclMap, but the
change that adds support to the ABIs to pass _cmd
touches a fair amount of code.
llvm-svn: 121722
Added a ThreadPlanCallUserExpression that differs from ThreadPlanCallFunction in that it holds onto a shared pointer to its ClangUserExpression so that can't go away before the thread plan is done using it.
Fixed the stop message when you hit a breakpoint while running a user expression so it is more obvious what has happened.
llvm-svn: 120386
with the Interrupted bit set. Process::HandlePrivateEvent ignores Interrupted events.
DoHalt is changed to ensure that the stop even is processed, and an event with
the Interrupted event is posted. Finally ClangFunction is rationalized to use this
facility so the that Halt is handled more deterministically.
llvm-svn: 119453
cases when getting the clang type:
- need only a forward declaration
- need a clang type that can be used for layout (members and args/return types)
- need a full clang type
This allows us to partially parse the clang types and be as lazy as possible.
The first case is when we just need to declare a type and we will complete it
later. The forward declaration happens only for class/union/structs and enums.
The layout type allows us to resolve the full clang type _except_ if we have
any modifiers on a pointer or reference (both R and L value). In this case
when we are adding members or function args or return types, we only need to
know how the type will be laid out and we can defer completing the pointee
type until we later need it. The last type means we need a full definition for
the clang type.
Did some renaming of some enumerations to get rid of the old "DC" prefix (which
stands for DebugCore which is no longer around).
Modified the clang namespace support to be almost ready to be fed to the
expression parser. I made a new ClangNamespaceDecl class that can carry around
the AST and the namespace decl so we can copy it into the expression AST. I
modified the symbol vendor and symbol file plug-ins to use this new class.
llvm-svn: 118976
don't crash if we disable logging when some code already has a copy of the
logger. Prior to this fix, logs were handed out as pointers and if they were
held onto while a log got disabled, then it could cause a crash. Now all logs
are handed out as shared pointers so this problem shouldn't happen anymore.
We are also using our new shared pointers that put the shared pointer count
and the object into the same allocation for a tad better performance.
llvm-svn: 118319