Commit Graph

169 Commits

Author SHA1 Message Date
Groverkss 98daa4e425 [MLIR] Fix incorrect removal of source loop in loop fusion
This patch fixes a bug in loop fusion pass where the source loop was removed
even when the fused loop did not cover all iterations of the source loop.

This was because the fast hueristic check for checking if source loop and
fused loop have same iterations did not take into account steps in loop.

Reviewed By: dcaballe, bondhugula

Differential Revision: https://reviews.llvm.org/D114164
2021-11-23 02:54:09 +05:30
Vladislav Vinogradov e41ebbecf9 [mlir][RFC] Refactor layout representation in MemRefType
The change is based on the proposal from the following discussion:
https://llvm.discourse.group/t/rfc-memreftype-affine-maps-list-vs-single-item/3968

* Introduce `MemRefLayoutAttr` interface to get `AffineMap` from an `Attribute`
  (`AffineMapAttr` implements this interface).
* Store layout as a single generic `MemRefLayoutAttr`.

This change removes the affine map composition feature and related API.
Actually, while the `MemRefType` itself supported it, almost none of the upstream
can work with more than 1 affine map in `MemRefType`.

The introduced `MemRefLayoutAttr` allows to re-implement this feature
in a more stable way - via separate attribute class.

Also the interface allows to use different layout representations rather than affine maps.
For example, the described "stride + offset" form, which is currently supported in ASM parser only,
can now be expressed as separate attribute.

Reviewed By: ftynse, bondhugula

Differential Revision: https://reviews.llvm.org/D111553
2021-10-19 12:31:15 +03:00
Mogball a54f4eae0e [MLIR] Replace std ops with arith dialect ops
Precursor: https://reviews.llvm.org/D110200

Removed redundant ops from the standard dialect that were moved to the
`arith` or `math` dialects.

Renamed all instances of operations in the codebase and in tests.

Reviewed By: rriddle, jpienaar

Differential Revision: https://reviews.llvm.org/D110797
2021-10-13 03:07:03 +00:00
Matthias Springer c777e51468 [mlir][Analysis][NFC] FlatAffineConstraints: Use BoundType enum in functions
Differential Revision: https://reviews.llvm.org/D108185
2021-08-19 10:33:42 +09:00
Matthias Springer c19c51e357 [mlir][Analysis][NFC] Clean up FlatAffineValueConstraints
* Rename ids to values in FlatAffineValueConstraints.
* Overall cleanup of comments in FlatAffineConstraints and FlatAffineValueConstraints.

Differential Revision: https://reviews.llvm.org/D107947
2021-08-17 10:38:57 +09:00
Matthias Springer 4c4ab673f1 [mlir][Analysis][NFC] Split FlatAffineConstraints class
* Extract "value" functionality of `FlatAffineConstraints` into a new derived `FlatAffineValueConstraints` class. Current users of `FlatAffineConstraints` can use `FlatAffineValueConstraints` without additional code changes, thus NFC.
* `FlatAffineConstraints` no longer associates dimensions with SSA Values. All functionality that requires this, is moved to `FlatAffineValueConstraints`.
* `FlatAffineConstraints` no longer makes assumptions about where Values associated with dimensions are coming from.

Differential Revision: https://reviews.llvm.org/D107725
2021-08-17 10:09:17 +09:00
Sumesh Udayakumaran ada580863f [mlir] Enable cleanup of single iteration reduction loops being sibling-fused maximally
Changes include the following:
    1. Single iteration reduction loops being sibling fused at innermost insertion level
     are skipped from being considered as sequential loops.
    Otherwise, the slice bounds of these loops is reset.

    2. Promote loops that are skipped in previous step into outer loops.

    3. Two utility function - buildSliceTripCountMap, getSliceIterationCount - are moved from
mlir/lib/Transforms/Utils/LoopFusionUtils.cpp to mlir/lib/Analysis/Utils.cpp

Reviewed By: bondhugula, vinayaka-polymage

Differential Revision: https://reviews.llvm.org/D104249
2021-07-16 00:07:20 +03:00
Uday Bondhugula 715137d0c8 [MLIR] Fix memref get constant bound size and shape method
Fix FlatAffineConstraints::getConstantBoundOnDimSize to ensure that
returned bounds on dim size are always non-negative regardless of the
constraints on that dimension. Add an assertion at the user.

Differential Revision: https://reviews.llvm.org/D105171
2021-07-05 23:00:41 +05:30
William S. Moses e86fe368db [MLIR] Allow Affine scalar replacement to handle inner operations
Affine scalar replacement (and other affine passes, though not fixed here) don't properly handle operations with nested regions. This patch fixes the pass and two affine utilities to function properly given a non-affine internal region

This patch prevents the pass from throwing an internal compiler error when running on the added test case.

Differential Revision: https://reviews.llvm.org/D105058
2021-07-01 15:12:59 -04:00
Alex Zinenko 545fa37834 [mlir] Affine: parallelize affine loops with reductions
Introduce a basic support for parallelizing affine loops with reductions
expressed using iteration arguments. Affine parallelism detector now has a flag
to assume such reductions are parallel. The transformation handles a subset of
parallel reductions that are can be expressed using affine.parallel:
integer/float addition and multiplication. This requires to detect the
reduction operation since affine.parallel only supports a fixed set of
reduction operators.

Reviewed By: chelini, kumasento, bondhugula

Differential Revision: https://reviews.llvm.org/D101171
2021-04-29 13:16:24 +02:00
Vinayaka Bandishti dc537158d5 [MLIR][Affine] Add utility to check if the slice is valid
Fixes a bug in affine fusion pipeline where an incorrect slice is computed.
After the slice computation is done, original domain of the the source is
compared with the new domain that will result if the fusion succeeds. If the
new domain must be a subset of the original domain for the slice to be
valid. If the slice computed is incorrect, fusion based on such a slice is
avoided.

Relevant test cases are added/edited.

Fixes https://bugs.llvm.org/show_bug.cgi?id=49203

Differential Revision: https://reviews.llvm.org/D98239
2021-04-01 14:52:22 +05:30
Diego Caballero ebca222b65 [mlir] Check 'iter_args' in 'isLoopParallel' utility
Fix 'isLoopParallel' utility so that 'iter_args' is taken into account
and loops with loop-carried dependences are not classified as parallel.

Reviewed By: tungld, vinayaka-polymage

Differential Revision: https://reviews.llvm.org/D97347
2021-02-25 18:12:34 +02:00
Diego Caballero c8fc5c0385 [mlir][Affine] Add support for multi-store producer fusion
This patch adds support for producer-consumer fusion scenarios with
multiple producer stores to the AffineLoopFusion pass. The patch
introduces some changes to the producer-consumer algorithm, including:

* For a given consumer loop, producer-consumer fusion iterates over its
producer candidates until a fixed point is reached.

* Producer candidates are gathered beforehand for each iteration of the
consumer loop and visited in reverse program order (not strictly guaranteed)
to maximize the number of loops fused per iteration.

In general, these changes were needed to simplify the multi-store producer
support and remove some of the workarounds that were introduced in the past
to support more fusion cases under the single-store producer limitation.

This patch also preserves the existing functionality of AffineLoopFusion with
one minor change in behavior. Producer-consumer fusion didn't fuse scenarios
with escaping memrefs and multiple outgoing edges (from a single store).
Multi-store producer scenarios will usually (always?) have multiple outgoing
edges so we couldn't fuse any with escaping memrefs, which would greatly limit
the applicability of this new feature. Therefore, the patch enables fusion for
these scenarios. Please, see modified tests for specific details.

Reviewed By: andydavis1, bondhugula

Differential Revision: https://reviews.llvm.org/D92876
2021-01-25 20:31:17 +02:00
Diego Caballero 735a07f047 Revert "[mlir][Affine] Add support for multi-store producer fusion"
This reverts commit 7dd198852b.

ASAN issue.
2021-01-21 00:37:23 +02:00
Diego Caballero 7dd198852b [mlir][Affine] Add support for multi-store producer fusion
This patch adds support for producer-consumer fusion scenarios with
multiple producer stores to the AffineLoopFusion pass. The patch
introduces some changes to the producer-consumer algorithm, including:

* For a given consumer loop, producer-consumer fusion iterates over its
producer candidates until a fixed point is reached.

* Producer candidates are gathered beforehand for each iteration of the
consumer loop and visited in reverse program order (not strictly guaranteed)
to maximize the number of loops fused per iteration.

In general, these changes were needed to simplify the multi-store producer
support and remove some of the workarounds that were introduced in the past
to support more fusion cases under the single-store producer limitation.

This patch also preserves the existing functionality of AffineLoopFusion with
one minor change in behavior. Producer-consumer fusion didn't fuse scenarios
with escaping memrefs and multiple outgoing edges (from a single store).
Multi-store producer scenarios will usually (always?) have multiple outgoing
edges so we couldn't fuse any with escaping memrefs, which would greatly limit
the applicability of this new feature. Therefore, the patch enables fusion for
these scenarios. Please, see modified tests for specific details.

Reviewed By: andydavis1, bondhugula

Differential Revision: https://reviews.llvm.org/D92876
2021-01-20 19:03:07 +02:00
Christian Sigg 1ffc1aaa09 [mlir] Use mlir::OpState::operator->() to get to methods of mlir::Operation.
This is a preparation step to remove those methods from OpState.

Reviewed By: mehdi_amini

Differential Revision: https://reviews.llvm.org/D93098
2020-12-13 09:58:16 +01:00
Christian Sigg c4a0405902 Add `Operation* OpState::operator->()` to provide more convenient access to members of Operation.
Given that OpState already implicit converts to Operator*, this seems reasonable.

The alternative would be to add more functions to OpState which forward to Operation.

Reviewed By: rriddle, ftynse

Differential Revision: https://reviews.llvm.org/D92266
2020-12-02 15:46:20 +01:00
Diego Caballero c1ba9c43ad [mlir][Affine] Refactor affine fusion code in pass to utilities
Refactoring/clean-up step needed to add support for producer-consumer fusion
with multi-store producer loops and, in general, to implement more general
loop fusion strategies in Affine. It introduces the following changes:
  - AffineLoopFusion pass now uses loop fusion utilities more broadly to compute
    fusion legality (canFuseLoops utility) and perform the fusion transformation
    (fuseLoops utility).
  - Loop fusion utilities have been extended to deal with AffineLoopFusion
    requirements and assumptions while preserving both loop fusion utilities and
    AffineLoopFusion current functionality within a unified implementation.
    'FusionStrategy' has been introduced for this purpose and, in the future, it
    will allow us to have a single loop fusion core implementation that will produce
    different fusion outputs depending on the strategy used.
  - Improve separation of concerns for legality and profitability analysis:
    'isFusionProfitable' no longer filters out illegal scenarios that 'canFuse'
    didn't detect, or the other way around. 'canFuse' now takes loop dependences
    into account to determine the fusion loop depth (producer-consumer fusion only).
  - As a result, maximal fusion now doesn't require any profitability analysis.
  - Slices are now computed only once and reused across the legality, profitability
    and fusion transformation steps (producer-consumer).
  - Refactor some utilities and remove redundant copies of them.

This patch is NFCI and should preserve the existing functionality of both the
AffineLoopFusion pass and the affine fusion utilities.

Reviewed By: andydavis1, bondhugula

Differential Revision: https://reviews.llvm.org/D90798
2020-11-18 13:50:32 -08:00
Vincent Zhao 654e8aadfd [MLIR] Consider AffineIfOp when getting the index set of an Op wrapped in nested loops
This diff attempts to resolve the TODO in `getOpIndexSet` (formerly
known as `getInstIndexSet`), which states "Add support to handle IfInsts
surronding `op`".

Major changes in this diff:

1. Overload `getIndexSet`. The overloaded version considers both
`AffineForOp` and `AffineIfOp`.
2. The `getInstIndexSet` is updated accordingly: its name is changed to
`getOpIndexSet` and its implementation is based on a new API `getIVs`
instead of `getLoopIVs`.
3. Add `addAffineIfOpDomain` to `FlatAffineConstraints`, which extracts
new constraints from the integer set of `AffineIfOp` and merges it to
the current constraint system.
4. Update how a `Value` is determined as dim or symbol for
`ValuePositionMap` in `buildDimAndSymbolPositionMaps`.

Differential Revision: https://reviews.llvm.org/D84698
2020-08-09 03:16:03 +05:30
Jeremy Bruestle 2ede891875 [MLIR] IR changes to add yield semantics for affine.if and affine.parallel
Reviewed By: bondhugula, flaub

Differential Revision: https://reviews.llvm.org/D82600
2020-07-09 12:12:42 -07:00
River Riddle 9db53a1827 [mlir][NFC] Remove usernames and google bug numbers from TODO comments.
These were largely leftover from when MLIR was a google project, and don't really follow LLVM guidelines.
2020-07-07 01:40:52 -07:00
Rahul Joshi ee394e6842 [MLIR] Add variadic isa<> for Type, Value, and Attribute
- Also adopt variadic llvm::isa<> in more places.
- Fixes https://bugs.llvm.org/show_bug.cgi?id=46445

Differential Revision: https://reviews.llvm.org/D82769
2020-06-29 15:04:48 -07:00
Rahul Joshi d891d738d9 [MLIR][NFC] Adopt variadic isa<>
Differential Revision: https://reviews.llvm.org/D82489
2020-06-24 17:02:44 -07:00
Uday Bondhugula 7965dd79a3 [MLIR] Fix memref region compute for 0-d memref accesses
Fix memref region compute for 0-d memref accesses in certain cases (when
there are loops surrounding such 0-d accesses).

Differential Revision: https://reviews.llvm.org/D81792
2020-06-16 13:59:53 +05:30
Diego Caballero a45fb1942f [mlir][Affine] Introduce affine memory interfaces
This patch introduces interfaces for read and write ops with affine
restrictions. I used `read`/`write` intead of `load`/`store` for the
interfaces so that they can also be implemented by dma ops.
For now, they are only implemented by affine.load, affine.store,
affine.vector_load and affine.vector_store.

For testing purposes, this patch also migrates affine loop fusion and
required analysis to use the new interfaces. No other changes are made
beyond that.

Co-authored-by: Alex Zinenko <zinenko@google.com>

Reviewed By: bondhugula, ftynse

Differential Revision: https://reviews.llvm.org/D79829
2020-05-19 17:32:50 -07:00
Sean Silva 98eead8186 [mlir][Value] Add v.getDefiningOp<OpTy>()
Summary:
This makes a common pattern of
`dyn_cast_or_null<OpTy>(v.getDefiningOp())` more concise.

Differential Revision: https://reviews.llvm.org/D79681
2020-05-11 12:55:27 -07:00
Uday Bondhugula ca09dab303 [MLIR][NFC] Fix/update debug messages for analysis utils and affine fusion
Drop trailing period in debug messages. Add an extra line for fusion
debug info.

Differential Revision: https://reviews.llvm.org/D79471
2020-05-06 12:27:59 +05:30
Uday Bondhugula 42ada5fee9 [MLIR] NFC cleanup/modernize memref-dataflow-opt / getNestingDepth
Bring code to date with recent changes to the core infrastructure /
coding style.

Differential Revision: https://reviews.llvm.org/D77998
2020-04-14 00:03:06 +05:30
Uday Bondhugula d314b7d5ca [MLIR] ShapedType accessor minor fixes + add isDynamicDim accessor
Minor fixes and cleanup for ShapedType accessors, use
ShapedType::kDynamicSize, add ShapedType::isDynamicDim.

Differential Revision: https://reviews.llvm.org/D77710
2020-04-09 08:47:50 +05:30
Uday Bondhugula 01d97a3549 [MLIR] Add support to use aligned_alloc to lower AllocOp from std to llvm
Support to recognize and deal with aligned_alloc was recently added to
LLVM's TLI/MemoryBuiltins and its various optimization passes. This
revision adds support for generation of aligned_alloc's when lowering
AllocOp from std to LLVM. Setting 'use-aligned_alloc=1' will lead to
aligned_alloc being used for all heap allocations. An alignment and size
that works with the constraints of aligned_alloc is chosen.

Using aligned_alloc is preferable to "using malloc and adjusting the
allocated pointer to align for indexing" because the pointer access
arithmetic done for the latter only makes it harder for LLVM passes to
deal with for analysis, optimization, attribute deduction, and rewrites.

Differential Revision: https://reviews.llvm.org/D77528
2020-04-08 15:10:19 +05:30
Uday Bondhugula 70da33bf30 [MLIR] fix/update affine data copy utility for max/min bounds
Fix point-wise copy generation to work with bounds that have max/min.
Change structure of copy loop nest to use absolute loop indices and
subtracting base from the indexes of the fast buffers. Update supporting
utilities: Fix FlatAffineConstraints::getLowerAndUpperBound to look at
equalities as well and for a missing division. Update unionBoundingBox
to not discard common constraints (leads to a tighter system). Update
MemRefRegion::getConstantBoundingSizeAndShape to add memref dimension
constraints. Run removeTrivialRedundancy at the end of
MemRefRegion::compute.  Run single iteration loop promotion and
load/store canonicalization after affine data copy (in its test pass as
well).

Differential Revision: https://reviews.llvm.org/D77320
2020-04-07 13:55:42 +05:30
Uday Bondhugula 43a95a543f [MLIR] Introduce full/partial tile separation using if/else
This patch introduces a utility to separate full tiles from partial
tiles when tiling affine loop nests where trip counts are unknown or
where tile sizes don't divide trip counts. A conditional guard is
generated to separate out the full tile (with constant trip count loops)
into the then block of an 'affine.if' and the partial tile to the else
block. The separation allows the 'then' block (which has constant trip
count loops) to be optimized better subsequently: for eg. for
unroll-and-jam, register tiling, vectorization without leading to
cleanup code, or to offload to accelerators. Among techniques from the
literature, the if/else based separation leads to the most compact
cleanup code for multi-dimensional cases (because a single version is
used to model all partial tiles).

INPUT

  affine.for %i0 = 0 to %M {
    affine.for %i1 = 0 to %N {
      "foo"() : () -> ()
    }
  }

OUTPUT AFTER TILING W/O SEPARATION

  map0 = affine_map<(d0) -> (d0)>
  map1 = affine_map<(d0)[s0] -> (d0 + 32, s0)>

  affine.for %arg2 = 0 to %M step 32 {
    affine.for %arg3 = 0 to %N step 32 {
      affine.for %arg4 = #map0(%arg2) to min #map1(%arg2)[%M] {
        affine.for %arg5 = #map0(%arg3) to min #map1(%arg3)[%N] {
          "foo"() : () -> ()
        }
      }
    }
  }

  OUTPUT AFTER TILING WITH SEPARATION

  map0 = affine_map<(d0) -> (d0)>
  map1 = affine_map<(d0) -> (d0 + 32)>
  map2 = affine_map<(d0)[s0] -> (d0 + 32, s0)>

  #set0 = affine_set<(d0, d1)[s0, s1] : (-d0 + s0 - 32 >= 0, -d1 + s1 - 32 >= 0)>

  affine.for %arg2 = 0 to %M step 32 {
    affine.for %arg3 = 0 to %N step 32 {
      affine.if #set0(%arg2, %arg3)[%M, %N] {
        // Full tile.
        affine.for %arg4 = #map0(%arg2) to #map1(%arg2) {
          affine.for %arg5 = #map0(%arg3) to #map1(%arg3) {
            "foo"() : () -> ()
          }
        }
      } else {
        // Partial tile.
        affine.for %arg4 = #map0(%arg2) to min #map2(%arg2)[%M] {
          affine.for %arg5 = #map0(%arg3) to min #map2(%arg3)[%N] {
            "foo"() : () -> ()
          }
        }
      }
    }
  }

The separation is tested via a cmd line flag on the loop tiling pass.
The utility itself allows one to pass in any band of contiguously nested
loops, and can be used by other transforms/utilities. The current
implementation works for hyperrectangular loop nests.

Signed-off-by: Uday Bondhugula <uday@polymagelabs.com>

Differential Revision: https://reviews.llvm.org/D76700
2020-03-28 06:58:35 +05:30
Uday Bondhugula 92744f6247 [MLIR] Add flat affine constraints method to round trip integer set
- add method to get back an integer set from flat affine constraints;
  this allows a round trip
- use this to complete the simplification of integer sets in
  -simplify-affine-structures
- update FlatAffineConstraints::removeTrivialRedundancy to also do GCD
  tightening and normalize by GCD (while still keeping it linear time).

Signed-off-by: Uday Bondhugula <uday@polymagelabs.com>
2020-03-26 12:07:13 +05:30
Uday Bondhugula 8786cdb3cd [MLIR][NFC] std::is_same || -> llvm::is_one_of
Switch std::is_same disjunctions to llvm::is_one_of

Differential Revision: https://reviews.llvm.org/D76745
2020-03-25 09:09:37 +05:30
Rob Suderman e708471395 [mlir][NFC] Cleanup AffineOps directory structure
Summary:
Change AffineOps Dialect structure to better group both IR and Tranforms. This included extracting transforms directly related to AffineOps. Also move AffineOps to Affine.

Differential Revision: https://reviews.llvm.org/D76161
2020-03-20 14:23:43 -07:00
River Riddle 0ddba0bd59 [mlir][SideEffects] Replace HasNoSideEffect with the memory effect interfaces.
HasNoSideEffect can now be implemented using the MemoryEffectInterface, removing the need to check multiple things for the same information. This also removes an easy foot-gun for users as 'Operation::hasNoSideEffect' would ignore operations that dynamically, or recursively, have no side effects. This also leads to an immediate improvement in some of the existing users, such as DCE, now that they have access to more information.

Differential Revision: https://reviews.llvm.org/D76036
2020-03-12 14:26:15 -07:00
River Riddle de5a81b102 [mlir] Update several usages of IntegerType to properly handled unsignedness.
Summary: For example, DenseElementsAttr currently does not properly round-trip unsigned integer values.

Differential Revision: https://reviews.llvm.org/D75374
2020-03-02 09:19:26 -08:00
Rob Suderman 69d757c0e8 Move StandardOps/Ops.h to StandardOps/IR/Ops.h
Summary:
NFC - Moved StandardOps/Ops.h to a StandardOps/IR dir to better match surrounding
directories. This is to match other dialects, and prepare for moving StandardOps
related transforms in out for Transforms and into StandardOps/Transforms.

Differential Revision: https://reviews.llvm.org/D74940
2020-02-21 11:58:47 -08:00
Lei Zhang 35b685270b [mlir] Add a signedness semantics bit to IntegerType
Thus far IntegerType has been signless: a value of IntegerType does
not have a sign intrinsically and it's up to the specific operation
to decide how to interpret those bits. For example, std.addi does
two's complement arithmetic, and std.divis/std.diviu treats the first
bit as a sign.

This design choice was made some time ago when we did't have lots
of dialects and dialects were more rigid. Today we have much more
extensible infrastructure and different dialect may want different
modelling over integer signedness. So while we can say we want
signless integers in the standard dialect, we cannot dictate for
others. Requiring each dialect to model the signedness semantics
with another set of custom types is duplicating the functionality
everywhere, considering the fundamental role integer types play.

This CL extends the IntegerType with a signedness semantics bit.
This gives each dialect an option to opt in signedness semantics
if that's what they want and helps code sharing. The parser is
modified to recognize `si[1-9][0-9]*` and `ui[1-9][0-9]*` as
signed and unsigned integer types, respectively, leaving the
original `i[1-9][0-9]*` to continue to mean no indication over
signedness semantics. All existing dialects are not affected (yet)
as this is a feature to opt in.

More discussions can be found at:

https://groups.google.com/a/tensorflow.org/d/msg/mlir/XmkV8HOPWpo/7O4X0Nb_AQAJ

Differential Revision: https://reviews.llvm.org/D72533
2020-02-21 09:16:54 -05:00
Frank Laub a248fa90a7 [MLIR][Affine] NFC: Move AffineValueMap and MutableAffineMap
Summary:
The `AffineValueMap` is moved into `Dialect/AffineOps` to prevent a cyclic
dependency between `Analysis` and `Dialect/AffineOps`.

Reviewers: bondhugula, herhut, nicolasvasilache, rriddle, mehdi_amini

Reviewed By: rriddle, mehdi_amini

Subscribers: mgorny, mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, arpith-jacob, mgester, lucyrfox, aartbik, liufengdb, Joonsoo, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D74277
2020-02-10 02:26:27 -08:00
Mehdi Amini 308571074c Mass update the MLIR license header to mention "Part of the LLVM project"
This is an artifact from merging MLIR into LLVM, the file headers are
now aligned with the rest of the project.
2020-01-26 03:58:30 +00:00
Benjamin Kramer df186507e1 Make helper functions static or move them into anonymous namespaces. NFC. 2020-01-14 14:06:37 +01:00
River Riddle 2bdf33cc4c [mlir] NFC: Remove Value::operator* and Value::operator-> now that Value is properly value-typed.
Summary: These were temporary methods used to simplify the transition.

Reviewed By: antiagainst

Differential Revision: https://reviews.llvm.org/D72548
2020-01-11 08:54:39 -08:00
River Riddle e62a69561f NFC: Replace ValuePtr with Value and remove it now that Value is value-typed.
ValuePtr was a temporary typedef during the transition to a value-typed Value.

PiperOrigin-RevId: 286945714
2019-12-23 16:36:53 -08:00
Mehdi Amini 56222a0694 Adjust License.txt file to use the LLVM license
PiperOrigin-RevId: 286906740
2019-12-23 15:33:37 -08:00
River Riddle 35807bc4c5 NFC: Introduce new ValuePtr/ValueRef typedefs to simplify the transition to Value being value-typed.
This is an initial step to refactoring the representation of OpResult as proposed in: https://groups.google.com/a/tensorflow.org/g/mlir/c/XXzzKhqqF_0/m/v6bKb08WCgAJ

This change will make it much simpler to incrementally transition all of the existing code to use value-typed semantics.

PiperOrigin-RevId: 286844725
2019-12-22 22:00:23 -08:00
Kazuaki Ishizaki ae05cf27c6 Minor spelling tweaks
Closes tensorflow/mlir#304

PiperOrigin-RevId: 284568358
2019-12-09 09:23:48 -08:00
Andy Davis 68a8da4a93 Fix Affine Loop Fusion test case reported on github.
This CL utilizies the more robust fusion feasibility analysis being built out in LoopFusionUtils, which will eventually be used to replace the current affine loop fusion pass.

PiperOrigin-RevId: 281112340
2019-11-18 11:20:37 -08:00
Kazuaki Ishizaki 8bfedb3ca5 Fix minor spelling tweaks (NFC)
Closes tensorflow/mlir#177

PiperOrigin-RevId: 275692653
2019-10-20 00:11:34 -07:00
Uday Bondhugula f559c38c28 Upgrade/fix/simplify store to load forwarding
- fix store to load forwarding for a certain set of cases (where
  forwarding shouldn't have happened); use AffineValueMap difference
  based MemRefAccess equality checking; utility logic is also greatly
  simplified

- add missing equality/inequality operators for AffineExpr ==/!= ints

- add == != operators on MemRefAccess

Closes tensorflow/mlir#136

COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/136 from bondhugula:store-load-forwarding d79fd1add8bcfbd9fa71d841a6a9905340dcd792
PiperOrigin-RevId: 270457011
2019-09-21 10:08:56 -07:00