find the hotspots in our code when indexing the DWARF. A combination of
using SmallVector to avoid collection allocations, using fixed form
sizes when possible, and optimizing the hot loops contributed to the
speedup.
llvm-svn: 113961
or a settings prefix, and it will list information about the subset of settings
you requested. Also added tab-completion (now that it takes an optional argument).
llvm-svn: 113952
Added a "bool show_fullpaths" to many more objects that were
previously always dumping full paths.
Fixed a few places where the DWARF was not indexed when we
we needed it to be when making queries. Also fixed an issue
where the DWARF in .o files wasn't searching all .o files
for the types.
Fixed an issue with the output from "image lookup --type <TYPENAME>"
where the name and byte size might not be resolved and might not
display. We now call the accessors so we end up seeing all of the
type info.
llvm-svn: 113951
interpreter from working. The communication read thread could
startup and immediately exit if m_read_thread_enabled was
checked in the thread function before it was set by the
thread that spawns the read thread. Now m_read_thread_enabled is set
to true prior to spawning the read thread to avoid this issue.
Hopefully this will clear up the sporatic failures in our test suite.
llvm-svn: 113947
all types in all compile units. I added a new kind of accelerator table to
the DWARF that allows us to index the DWARF compile units and DIEs in a way
that doesn't require the data to stay loaded. Currently when indexing the
DWARF we check if the compile unit had parsed its DIEs and if it hasn't we
index the data and free all of the DIEs so we can reparse later when we need
to after using one of our complete accelerator tables to determine we need
to reparse some DWARF. If the DIEs had already been parsed we leave them
loaded. The new accelerator table uses the "const char *" pointers from our
ConstString class as the keys, and NameToDIE::Info as the value. This info
contains the compile unit index and the DIE index which means we are pointed
right to the DIE we need unlike the other DWARF accelerator tables that often
just point us to the compile unit we would find our answer in.
llvm-svn: 113933
Added the ability to specify a preference for mangled or demangled to Mangled::GetName.
Changed one place where mangled was prefered in GetName.
The Dynamic loader should look up the target of a stub by mangled name if it exists.
llvm-svn: 113869
expressions. This involved three main changes:
- In ClangUserExpression::ClangUserExpression(),
we now insert the following lines into the
expression:
#define this ___clang_this
#define self ___clang_self
- In ClangExpressionDeclMap::GetDecls(), we
special-case ___clang_(this|self) and instead
look up "this" or "self"
- In ClangASTSource, we introduce the capability
to generate Decls with a different, overridden,
name from the one that was requested, e.g.
this for ___clang_this.
llvm-svn: 113866
to any inferior process because the code was checking if no run args were
set and then adding and empty string. This was happening for environment
vars as well.
llvm-svn: 113831
to return the correct result.
Fixed "bool Variable::IsInScope (StackFrame *frame)" to return the correct
result when there are no location lists.
Modified the "frame variable" command such that:
- if no arguments are given (dump all frame variables), then we only show
variables that are currently in scope
- if some arguments are given, we show an error if the variable is out of
scope
llvm-svn: 113830
debug map showed that the location lists in the .o files needed some
refactoring in order to work. The case that was failing was where a function
that was in the "__TEXT.__textcoal_nt" in the .o file, and in the
"__TEXT.__text" section in the main executable. This made symbol lookup fail
due to the way we were finding a real address in the debug map which was
by finding the section that the function was in in the .o file and trying to
find this in the main executable. Now the section list supports finding a
linked address in a section or any child sections. After fixing this, we ran
into issue that were due to DWARF and how it represents locations lists.
DWARF makes a list of address ranges and expressions that go along with those
address ranges. The location addresses are expressed in terms of a compile
unit address + offset. This works fine as long as nothing moves around. When
stuff moves around and offsets change between the remapped compile unit base
address and the new function address, then we can run into trouble. To deal
with this, we now store supply a location list slide amount to any location
list expressions that will allow us to make the location list addresses into
zero based offsets from the object that owns the location list (always a
function in our case).
With these fixes we can now re-link random address ranges inside the debugger
for use with our DWARF + debug map, incremental linking, and more.
Another issue that arose when doing the DWARF in the .o files was that GCC
4.2 emits a ".debug_aranges" that only mentions functions that are externally
visible. This makes .debug_aranges useless to us and we now generate a real
address range lookup table in the DWARF parser at the same time as we index
the name tables (that are needed because .debug_pubnames is just as useless).
llvm-gcc doesn't generate a .debug_aranges section, though this could be
fixed, we aren't going to rely upon it.
Renamed a bunch of "UINT_MAX" to "UINT32_MAX".
llvm-svn: 113829
was used to set the selected thread if none was selected. Use a more robust
API to accomplish the task.
Also fixed an error found, while investigating, in CommandObjectThreadSelect::
Execute() where the return status was not properly set if successful.
As a result, both the stl step-in test cases with expectedFailure decorators now
passed.
llvm-svn: 113825
- If you put a semicolon at the end of an expression,
this no longer causes the expression parser to
error out. This was a two-part fix: first,
ClangExpressionDeclMap::Materialize now handles
an empty struct (such as when there is no return
value); second, ASTResultSynthesizer walks backward
from the end of the ASTs until it reaches something
that's not a NullStmt.
- ClangExpressionVariable now properly byte-swaps when
printing itself.
- ClangUtilityFunction now cleans up after itself when
it's done compiling itself.
- Utility functions can now use external functions just
like user expressions.
- If you end your expression with a statement that does
not return a value, the expression now runs correctly
anyway.
Also, added the beginnings of an Objective-C object
validator function, which is neither installed nor used
as yet.
llvm-svn: 113789
no elements so that they at least have 1 element.
Added the ability to show the declaration location of variables to the
"frame variables" with the "--show-declaration" option ("-c" for short).
Changed the "frame variables" command over to use the value object code
so that we use the same code path as the public API does when accessing and
displaying variable values.
llvm-svn: 113733
union, or class that contained an enumeration type. When I was creating
the clang enumeration decl, I wasn't calling "EnumDecl::setIntegerType (QualType)"
which means that if the enum decl was ever asked to figure out it's bit width
(getTypeInfo()) it would crash. We didn't run into this with enum types that
weren't inside classes because the DWARF already told us how big the type was
and when we printed an enum we would never need to calculate the size, we
would use the pre-cached byte size we got from the DWARF. When the enum was
in a struct/union/class and we tried to layout the struct, the layout code
would attempt to get the type info and segfault.
llvm-svn: 113729
Fixed an issue where LLDB would fail to set a breakpoint by
file and line if the DWARF line table has multiple file entries
in the support files for a source file.
llvm-svn: 113721
we cached remapping information using the old nlist index to the
new symbol index, yet we tried to lookup the symbol stubs that
were for symbols that had been remapped by ID instead of using
the new symbol index. This is now fixed and the mach-o symbol tables
are fixed.
Use the delta between two vector entries to determine the stride
in case any padding is inserted by compilers for bsearch calls
on symbol tables when finding symbols by their original ID.
llvm-svn: 113719
They will now be represented as:
eSymbolTypeFunction: eSymbolTypeCode with IsDebug() == true
eSymbolTypeGlobal: eSymbolTypeData with IsDebug() == true and IsExternal() == true
eSymbolTypeStatic: eSymbolTypeData with IsDebug() == true and IsExternal() == false
This simplifies the logic when dealing with symbols and allows for symbols
to be coalesced into a single symbol most of the time.
Enabled the minimal symbol table for mach-o again after working out all the
kinks. We now get nice concise symbol tables and debugging with DWARF in the
.o files with a debug map in the binary works well again. There were issues
where the SymbolFileDWARFDebugMap symbol file parser was using symbol IDs and
symbol indexes interchangeably. Now that all those issues are resolved
debugging is working nicely.
llvm-svn: 113678
to specify a one-liner (either scripting or lldb command) inline.
Refactored CommandObjectBreakpointCommandAdd::Execute() a little bit and added
some comments.
Sn now, we use:
breakpoint command add -p 1 -o "conditional_break.stop_if_called_from_a()"
to specify a Python one-liner as the callback for breakpoint #1.
llvm-svn: 113672
SBValue to access it. For now this is just the result of ObjC NSPrintForDebugger,
but could be extended. Also store the results of the ObjC Object Printer in a
Stream, not a ConstString.
llvm-svn: 113660
pointed out by Jim Ingham. The convenient one-liner specification should only
apply when there is only one breakpoint id being specified for the time being.
llvm-svn: 113609
up a seciton offset address (SBAddress) within a module that returns a
symbol context (SBSymbolContext). Also added a SBSymbolContextList in
preparation for adding find/lookup APIs that can return multiple results.
Added a lookup example code that shows how to do address lookups.
llvm-svn: 113599
command for a breakpoint, for example:
(lldb) breakpoint command add -p 1 "conditional_break.stop_if_called_from_a()"
The ScriptInterpreter interface has an extra method:
/// Set a one-liner as the callback for the breakpoint command.
virtual void
SetBreakpointCommandCallback (CommandInterpreter &interpreter,
BreakpointOptions *bp_options,
const char *oneliner);
to accomplish the above.
Also added a test case to demonstrate lldb's use of breakpoint callback command
to stop at function c() only when its immediate caller is function a(). The
following session shows the user entering the following commands:
1) command source .lldb (set up executable, breakpoint, and breakpoint command)
2) run (the callback mechanism will skip two breakpoints where c()'s immeidate caller is not a())
3) bt (to see that indeed c()'s immediate caller is a())
4) c (to continue and finish the program)
test/conditional_break $ ../../build/Debug/lldb
(lldb) command source .lldb
Executing commands in '.lldb'.
(lldb) file a.out
Current executable set to 'a.out' (x86_64).
(lldb) breakpoint set -n c
Breakpoint created: 1: name = 'c', locations = 1
(lldb) script import sys, os
(lldb) script sys.path.append(os.path.join(os.getcwd(), os.pardir))
(lldb) script import conditional_break
(lldb) breakpoint command add -p 1 "conditional_break.stop_if_called_from_a()"
(lldb) run
run
Launching '/Volumes/data/lldb/svn/trunk/test/conditional_break/a.out' (x86_64)
(lldb) Checking call frames...
Stack trace for thread id=0x2e03 name=None queue=com.apple.main-thread:
frame #0: a.out`c at main.c:39
frame #1: a.out`b at main.c:34
frame #2: a.out`a at main.c:25
frame #3: a.out`main at main.c:44
frame #4: a.out`start
c called from b
Continuing...
Checking call frames...
Stack trace for thread id=0x2e03 name=None queue=com.apple.main-thread:
frame #0: a.out`c at main.c:39
frame #1: a.out`b at main.c:34
frame #2: a.out`main at main.c:47
frame #3: a.out`start
c called from b
Continuing...
Checking call frames...
Stack trace for thread id=0x2e03 name=None queue=com.apple.main-thread:
frame #0: a.out`c at main.c:39
frame #1: a.out`a at main.c:27
frame #2: a.out`main at main.c:50
frame #3: a.out`start
c called from a
Stopped at c() with immediate caller as a().
a(1) returns 4
b(2) returns 5
Process 20420 Stopped
* thread #1: tid = 0x2e03, 0x0000000100000de8 a.out`c + 7 at main.c:39, stop reason = breakpoint 1.1, queue = com.apple.main-thread
36
37 int c(int val)
38 {
39 -> return val + 3;
40 }
41
42 int main (int argc, char const *argv[])
(lldb) bt
bt
thread #1: tid = 0x2e03, stop reason = breakpoint 1.1, queue = com.apple.main-thread
frame #0: 0x0000000100000de8 a.out`c + 7 at main.c:39
frame #1: 0x0000000100000dbc a.out`a + 44 at main.c:27
frame #2: 0x0000000100000e4b a.out`main + 91 at main.c:50
frame #3: 0x0000000100000d88 a.out`start + 52
(lldb) c
c
Resuming process 20420
Process 20420 Exited
a(3) returns 6
(lldb)
llvm-svn: 113596
The Unwind and RegisterContext subclasses still need
to be finished; none of this code is used by lldb at
this point (unless you call into it by hand).
The ObjectFile class now has an UnwindTable object.
The UnwindTable object has a series of FuncUnwinders
objects (Function Unwinders) -- one for each function
in that ObjectFile we've backtraced through during this
debug session.
The FuncUnwinders object has a few different UnwindPlans.
UnwindPlans are a generic way of describing how to find
the canonical address of a given function's stack frame
(the CFA idea from DWARF/eh_frame) and how to restore the
caller frame's register values, if they have been saved
by this function.
UnwindPlans are created from different sources. One source is the
eh_frame exception handling information generated by the compiler
for unwinding an exception throw. Another source is an assembly
language inspection class (UnwindAssemblyProfiler, uses the Plugin
architecture) which looks at the instructions in the funciton
prologue and describes the stack movements/register saves that are
done.
Two additional types of UnwindPlans that are worth noting are
the "fast" stack UnwindPlan which is useful for making a first
pass over a thread's stack, determining how many stack frames there
are and retrieving the pc and CFA values for each frame (enough
to create StackFrameIDs). Only a minimal set of registers is
recovered during a fast stack walk.
The final UnwindPlan is an architectural default unwind plan.
These are provided by the ArchDefaultUnwindPlan class (which uses
the plugin architecture). When no symbol/function address range can
be found for a given pc value -- when we have no eh_frame information
and when we don't have a start address so we can't examine the assembly
language instrucitons -- we have to make a best guess about how to
unwind. That's when we use the architectural default UnwindPlan.
On x86_64, this would be to assume that rbp is used as a stack pointer
and we can use that to find the caller's frame pointer and pc value.
It's a last-ditch best guess about how to unwind out of a frame.
There are heuristics about when to use one UnwindPlan versues the other --
this will all happen in the still-begin-written UnwindLLDB subclass of
Unwind which runs the UnwindPlans.
llvm-svn: 113581
cleaning up the output of many GetDescription objects that are part of a
symbol context. This fixes an issue where no ranges were being printed out
for functions, blocks and symbols.
llvm-svn: 113571
to be set up the way they are. Comment out code that removes pending
settings for live instances (after the settings are copied over).
llvm-svn: 113519
are always printed immediately after the command, before optional
options; also so that in the detailed descriptions of each command
option, the options and their help are output in alphabetical order
(sorted by the short option) rather in whatever order they happened to
be in the table.
llvm-svn: 113496
Renamed the "dispatchqaddr" setting that was coming back for stop reply packets
to be named "qaddr" so that gdb doesn't thing it is a register number. gdb
was checking the first character and assuming "di" was a hex register number
because 'd' is a hex digit. It has been shortened so gdb can safely ignore it.
llvm-svn: 113475
Make get/set variable at the debugger level always set the particular debugger's instance variables rather than
the default variables.
llvm-svn: 113474
with the Clang parser that prevents us from passing
Objective-C types to functions that expect C types.
This quick hack keeps us in business until that
interaction is fixed.
llvm-svn: 113429
certain functions from being resolved correctly.
Some functions (particularly varargs functions)
are BitCast before being called, and the problem
was that a CallInst where getCalledValue()
returned a BitCast ConstantExpr was not being
relocated at all.
This problem should now be resolved for the case
of BitCast.
llvm-svn: 113396
pending instance uses the specified instance name rather than creating a new one; add brackets to instance names
when searching for and removing pending instances.
llvm-svn: 113370
new change will omit unneeded symbol table entries and coalesce
function entries (N_FUN stab entries) with their linker code
symbol (N_SECT symbols) into only the function symbol to avoid
duplicate symbol table entries. It will also coalesce N_STSYM and
the data linker symbol into just one static data symbol.
llvm-svn: 113363
member variables.
Modified lldb_private::Module to have an accessor that can be used to tell if
a module is a dynamic link editor (dyld) as there are functions in dyld on
darwin that mirror functions in libc (malloc, free, etc) that should not
be used when doing function lookups by name in expressions if there are more
than one match when looking up functions by name.
llvm-svn: 113313
expressions correctly. These produced a result
variable with an initializer but no store
instruction, and the store instruction was as
a result never rewritten to become a store to a
persistent variable.
Now if the result variable has an initializer
but is never used, we generate a (redundant)
store instruction for it, which is then later
rewritten into a (useful) store to the persistent
result variable.
llvm-svn: 113300
symbols with the same name and no debug information.
Also improved the way functions are called so we
don't automatically define them as variadic functions
in the IR.
llvm-svn: 113290
(i.e., leave the value the same, so that a new
stack frame will be linked to the previous
stack) rather than zeroing out RBP.
This fixes calls to dlopen(), for example, which
does a backtrace to see which image is calling
it.
llvm-svn: 113288
symbol tables. Minimal symbol tables enable us to merge two symbols, one
debug symbol and one linker symbol, into a single symbol that can carry
just as much information and will avoid duplicate symbols in the symbol
table.
llvm-svn: 113223
parent, sibling and first child block, and access to the
inline function information.
Added an accessor the StackFrame:
Block * lldb_private::StackFrame::GetFrameBlock();
LLDB represents inline functions as lexical blocks that have
inlined function information in them. The function above allows
us to easily get the top most lexical block that defines a stack
frame. When there are no inline functions in function, the block
returned ends up being the top most block for the function. When
the PC is in an inlined funciton for a frame, this will return the
first parent block that has inlined function information. The
other accessor: StackFrame::GetBlock() will return the deepest block
that matches the frame's PC value. Since most debuggers want to display
all variables in the current frame, the Block returned by
StackFrame::GetFrameBlock can be used to retrieve all variables for
the current frame.
Fixed the lldb_private::Block::DumpStopContext(...) to properly
display inline frames a block should display all of its inlined
functions. Prior to this fix, one of the call sites was being skipped.
This is a separate code path from the current default where inlined
functions get their own frames.
Fixed an issue where a block would always grab variables for any
child inline function blocks.
llvm-svn: 113195
handles user settable internal variables (the equivalent of set/show
variables in gdb). In addition to the basic infrastructure (most of
which is defined in UserSettingsController.{h,cpp}, there are examples
of two classes that have been set up to contain user settable
variables (the Debugger and Process classes). The 'settings' command
has been modified to be a command-subcommand structure, and the 'set',
'show' and 'append' commands have been moved into this sub-commabnd
structure. The old StateVariable class has been completely replaced
by this, and the state variable dictionary has been removed from the
Command Interpreter. Places that formerly accessed the state variable
mechanism have been modified to access the variables in this new
structure instead (checking the term-width; getting/checking the
prompt; etc.)
Variables are attached to classes; there are two basic "flavors" of
variables that can be set: "global" variables (static/class-wide), and
"instance" variables (one per instance of the class). The whole thing
has been set up so that any global or instance variable can be set at
any time (e.g. on start up, in your .lldbinit file), whether or not
any instances actually exist (there's a whole pending and default
values mechanism to help deal with that).
llvm-svn: 113041
execution context only when the process is still alive. When running the test
suite, the debugger is launching and killing processes constantly.
This might be the cause of the test hang as reported in rdar://problem/8377854,
where the debugger was looping infinitely trying to update a supposedly stale
thread list.
llvm-svn: 113022
Added extra logging for stepping.
Fixed an issue where cached stack frame data could be lost between runs when
the thread plans read a stack frame.
llvm-svn: 112973
might dump file paths that allows the dumping of full paths or just the
basenames. Switched the stack frame dumping code to use just the basenames for
the files instead of the full path.
Modified the StackID class to no rely on needing the start PC for the current
function/symbol since we can use the SymbolContextScope to uniquely identify
that, unless there is no symbol context scope. In that case we can rely upon
the current PC value. This saves the StackID from having to calculate the
start PC when the StackFrame::GetStackID() accessor is called.
Also improved the StackID less than operator to correctly handle inlined stack
frames in the same stack.
llvm-svn: 112867
function statics, file globals and static variables) that a frame contains.
The StackFrame objects can give out ValueObjects instances for
each variable which allows us to track when a variable changes and doesn't
depend on variable names when getting value objects.
StackFrame::GetVariableList now takes a boolean to indicate if we want to
get the frame compile unit globals and static variables.
The value objects in the stack frames can now correctly track when they have
been modified. There are a few more tweaks needed to complete this work. The
biggest issue is when stepping creates partial stacks (just frame zero usually)
and causes previous stack frames not to match up with the current stack frames
because the previous frames only has frame zero. We don't really want to
require that all previous frames be complete since stepping often must check
stack frames to complete their jobs. I will fix this issue tomorrow.
llvm-svn: 112800
expressions. If an expression dereferences an
invalid pointer, there will still be a crash -
just now the crash will be in the function
___clang_valid_pointer_check().
llvm-svn: 112785
expressions. Values used by the expression are
checked by validation functions which cause the
program to crash if the values are unsafe.
Major changes:
- Added IRDynamicChecks.[ch], which contains the
core code related to this feature
- Modified CommandObjectExpression to install the
validator functions into the target process.
- Added an accessor to Process that gets/sets the
helper functions
llvm-svn: 112690
persistent variables were staying around too long.
This caused the following problem:
- A persistent result variable is created for the
result of an expression. The pointer to the
corresponding Decl is stored in the variable.
- The persistent variable is looked up during
struct generation (correctly) using its Decl.
- Another expression defines a new result variable
which happens to have a Decl in the same place
as the original result variable.
- The persistent variable is looked up during
struct generation using its Decl, but the old
result variable appears first in the list and
has the same Decl pointer.
The fix is to destroy parser-specific data when
it is no longer valid.
Also improved some logging as I diagnosed the
bug.
llvm-svn: 112540
storing pointers to objects inside a std::vector.
These objects can move around as the std::vector
changes, invalidating the pointers.
llvm-svn: 112527
documentation. Symbol now inherits from the symbol
context scope so that the StackID can use a "SymbolContextScope *"
instead of a blockID (which could have been the same as some other
blockID from another symbol file).
Modified the stacks that are created on subsequent stops to reuse
the previous stack frame objects which will allow for some internal
optimization using pointer comparisons during stepping.
llvm-svn: 112495
debugger to insert self-contained functions for use by
expressions (mainly for error-checking).
In order to support detecting whether a crash occurred
in one of these helpers -- currently our preferred way
of reporting that an error-check failed -- added a bit
of support for getting the extent of a JITted function
in addition to just its base.
llvm-svn: 112324
o Fixed a crasher when getting it via SBTarget.GetExecutable().
>>> filespec = target.GetExecutable()
Segmentation fault
o And renamed SBFileSpec::GetFileName() to GetFilename() to be consistent with FileSpec::GetFilename().
llvm-svn: 112308
swaps on the variable list, value object list, and disassembly. This avoids
us having to try and update frame indexes and other things that were getting
out of sync.
llvm-svn: 112301
instead of trying to maintain the real frame list (unwind frames) and an
inline frame list. The information is cheap to produce when we already have
looked up a block and was making stack frame uniquing difficult when trying
to use the previous stack when making the current stack.
We now maintain the previous value object lists for common frames between
a previous and current frames so we will be able to tell when variable values
change.
llvm-svn: 112277
The goal is to separate the parser's data from the data
belonging to the parser's clients. This allows clients
to use the parser to obtain (for example) a JIT compiled
function or some DWARF code, and then discard the parser
state.
Previously, parser state was held in ClangExpression and
used liberally by ClangFunction, which inherited from
ClangExpression. The main effects of this refactoring
are:
- reducing ClangExpression to an abstract class that
declares methods that any client must expose to the
expression parser,
- moving the code specific to implementing the "expr"
command from ClangExpression and
CommandObjectExpression into ClangUserExpression,
a new class,
- moving the common parser interaction code from
ClangExpression into ClangExpressionParser, a new
class, and
- making ClangFunction rely only on
ClangExpressionParser and not depend on the
internal implementation of ClangExpression.
Side effects include:
- the compiler interaction code has been factored
out of ClangFunction and is now in an AST pass
(ASTStructExtractor),
- the header file for ClangFunction is now fully
documented,
- several bugs that only popped up when Clang was
deallocated (which never happened, since the
lifetime of the compiler was essentially infinite)
are now fixed, and
- the developer-only "call" command has been
disabled.
I have tested the expr command and the Objective-C
step-into code, which use ClangUserExpression and
ClangFunction, respectively, and verified that they
work. Please let me know if you encounter bugs or
poor documentation.
llvm-svn: 112249
bt all
show the backtrace for all threads, and:
bt 1 3 4
show the backtrace for threads 1, 3 and 4. If we want to come up with some fancier syntax for thread lists later, that will be great, but this will do for now.
llvm-svn: 112248
code stepping. Also we now store the stack frames for the current and previous
stops in the thread in std::auto_ptr objects. When we create a thread stack
frame list we pass the previous frame into it so it can re-use the frames
and maintain will allow for variable changes to be detected. I will implement
the stack frame reuse next.
llvm-svn: 112152
functionality into StackFrameList. This will allow us to copy the previous
stack backtrace from the previous stop into another variable so we can re-use
as much as possible from the previous stack backtrace.
llvm-svn: 112007
has inlined functions that all started at the same address, then the inlined
backtrace would not produce correct stack frames.
Also cleaned up and inlined a lot of stuff in lldb_private::Address.
Added a function to StackFrame to detect if the frame is a concrete frame so
we can detect the difference between actual frames and inlined frames.
llvm-svn: 111989
complex inlined examples.
StackFrame classes don't have a "GetPC" anymore, they have "GetFrameCodeAddress()".
This is because inlined frames will have a PC value that is the same as the
concrete frame that owns the inlined frame, yet the code locations for the
frame can be different. We also need to be able to get the real PC value for
a given frame so that variables evaluate correctly. To get the actual PC
value for a frame you can use:
addr_t pc = frame->GetRegisterContext()->GetPC();
Some issues with the StackFrame stomping on its own symbol context were
resolved which were causing the information to change for a frame when the
stack ID was calculated. Also the StackFrame will now correctly store the
symbol context resolve flags for any extra bits of information that were
looked up (if you ask for a block only and you find one, you will alwasy have
the compile unit and function).
llvm-svn: 111964
which is now on by default. Frames are gotten from the unwinder as concrete
frames, then if inline frames are to be shown, extra information to track
and reconstruct these frames is cached with each Thread and exanded as needed.
I added an inline height as part of the lldb_private::StackID class, the class
that helps us uniquely identify stack frames. This allows for two frames to
shared the same call frame address, yet differ only in inline height.
Fixed setting breakpoint by address to not require addresses to resolve.
A quick example:
% cat main.cpp
% ./build/Debug/lldb test/stl/a.out
Current executable set to 'test/stl/a.out' (x86_64).
(lldb) breakpoint set --address 0x0000000100000d31
Breakpoint created: 1: address = 0x0000000100000d31, locations = 1
(lldb) r
Launching 'a.out' (x86_64)
(lldb) Process 38031 Stopped
* thread #1: tid = 0x2e03, pc = 0x0000000100000d31, where = a.out`main [inlined] std::string::_M_data() const at /usr/include/c++/4.2.1/bits/basic_string.h:280, stop reason = breakpoint 1.1, queue = com.apple.main-thread
277
278 _CharT*
279 _M_data() const
280 -> { return _M_dataplus._M_p; }
281
282 _CharT*
283 _M_data(_CharT* __p)
(lldb) bt
thread #1: tid = 0x2e03, stop reason = breakpoint 1.1, queue = com.apple.main-thread
frame #0: pc = 0x0000000100000d31, where = a.out`main [inlined] std::string::_M_data() const at /usr/include/c++/4.2.1/bits/basic_string.h:280
frame #1: pc = 0x0000000100000d31, where = a.out`main [inlined] std::string::_M_rep() const at /usr/include/c++/4.2.1/bits/basic_string.h:288
frame #2: pc = 0x0000000100000d31, where = a.out`main [inlined] std::string::size() const at /usr/include/c++/4.2.1/bits/basic_string.h:606
frame #3: pc = 0x0000000100000d31, where = a.out`main [inlined] operator<< <char, std::char_traits<char>, std::allocator<char> > at /usr/include/c++/4.2.1/bits/basic_string.h:2414
frame #4: pc = 0x0000000100000d31, where = a.out`main + 33 at /Volumes/work/gclayton/Documents/src/lldb/test/stl/main.cpp:14
frame #5: pc = 0x0000000100000d08, where = a.out`start + 52
Each inline frame contains only the variables that they contain and each inlined
stack frame is treated as a single entity.
llvm-svn: 111877
ClangExpressionVariables for found external variables
as well as for struct members, replacing the Tuple
and StructMember data structures.
llvm-svn: 111859
to spawn a thread for each process that is being monitored. Previously
LLDB would spawn a single thread that would wait for any child process which
isn't ok to do as a shared library (LLDB.framework on Mac OSX, or lldb.so on
linux). The old single thread used to call wait4() with a pid of -1 which
could cause it to reap child processes that it shouldn't have.
Re-wrote the way Function blocks are handles. Previously I attempted to keep
all blocks in a single memory allocation (in a std::vector). This made the
code somewhat efficient, but hard to work with. I got rid of the old BlockList
class, and went to a straight parent with children relationship. This new
approach will allow for partial parsing of the blocks within a function.
llvm-svn: 111706
expression parser. There shouldn't be four separate
classes encapsulating a variable.
ClangExpressionVariable is now meant to be the
container for all variable information. It has
several optional components that hold data for
different subsystems.
ClangPersistentVariable has been removed; we now
use ClangExpressionVariable instead.
llvm-svn: 111600
order and address size correctly when the value comes from a file address.
Values have "file" addresses when they are globals and the debug information
specifies that they live in the object file at a given address (DWARF will
represent this as a location "DW_OP_addr <addr>"). This causes global pointers
to correctly extract their children on 64 bit programs.
llvm-svn: 111380
the resulting function from the .o file DWARF didn't make it into the final
executable. I recently changed the way FindFunctions() worked in the DWARF
with debug map case that caused regressions in our test suite for dead
stripped functions. The previous changes allowed us to leverage the powerful
searching added to the DWARF parser (search by full name, basename, selector,
or method name), without having to chop up the symbol names from the symbol
table and do any special parsing of the names to extract the basename,
selector or method. Previously we would look through the symbol table for
matches first, then try and find the .o file with DWARF for that symbol and
only search those .o files. Now we let the DWARF for the .o file search using
the new search styles, and filter out any functions that didn't make it.
llvm-svn: 111322
additional (ComandReturnObject *) result parameter (default to NULL) and does
the right thing in setting the result status.
Also removed used variable ast_context.
llvm-svn: 110992
should be hidden behind that, and the "GetStackFrameAtIndex" and "GetStackFrameCount" algorithms become generic. So I moved them to Thread.cpp.
llvm-svn: 110899
expression. It is now possible to do things like this:
(lldb) expr int $i = 5; $i + 1
$0 = (int) 6
(lldb) expr $i + 3
$1 = (int) 8
(lldb) expr $1 + $0
$2 = (int) 14
As a bonus, this allowed us to move printing of
expression results into the ClangPersistentVariable
class. This code needs a bit of refactoring -- in
particular, ClangExpressionDeclMap has eaten one too
many bacteria and needs to undergo mitosis -- but the
infrastructure appears to be holding up nicely.
llvm-svn: 110896
expression parser. It is now possible to type:
(lldb) expr int $i = 5; $i + 1
(int) 6
(lldb) expr $i + 2
(int) 7
The skeleton for automatic result variables is
also implemented. The changes affect:
- the process, which now contains a
ClangPersistentVariables object that holds
persistent variables associated with it
- the expression parser, which now uses
the persistent variables during variable
lookup
- TaggedASTType, where I loaded some commonly
used tags into a header so that they are
interchangeable between different clients of
the class
llvm-svn: 110777
stop event is pulled from the event queue. Then made the StopInfoBreakpoint's PerformAction do the
breakpoint command.
Also fixed the StopInfoBreakpoint's GetDescription so it gets the breakpoint location info, not the breakpoint
site info.
llvm-svn: 110637
Arrange that this then gets properly set on attach, or when a "file" is set.
Add a completer for "process attach -n".
Caveats: there isn't currently a way to handle multiple processes with the same name. That
will have to wait on a way to pass annotations along with the completion strings.
llvm-svn: 110624
made IR-based expression evaluation the default.
Also added a new class to hold persistent variables.
The class is empty as yet while I write up a design
document for what it will do. Also the place where
it is currently created (by the Expression command)
is certainly wrong.
llvm-svn: 110415
This will allow debugger plug-ins to make any instance of "lldb_private::StopInfo"
that can completely describe any stop reason. It also provides a framework for
doing intelligent things with the stop info at important times in the lifetime
of the inferior.
Examples include the signal stop info in StopInfoUnixSignal. It will check with
the process to see that the current action is for the signal. These actions
include wether to stop for the signal, wether the notify that the signal was
hit, and wether to pass the signal along to the inferior process. The
StopInfoUnixSignal class overrides the "ShouldStop()" method of StopInfo and
this allows the stop info to determine if it should stop at the signal or
continue the process.
StopInfo subclasses must override the following functions:
virtual lldb::StopReason
GetStopReason () const = 0;
virtual const char *
GetDescription () = 0;
StopInfo subclasses can override the following functions:
// If the subclass returns "false", the inferior will resume. The default
// version of this function returns "true" which means the default stop
// info will stop the process. The breakpoint subclass will check if
// the breakpoint wants us to stop by calling any installed callback on
// the breakpoint, and also checking if the breakpoint is for the current
// thread. Signals will check if they should stop based off of the
// UnixSignal settings in the process.
virtual bool
ShouldStop (Event *event_ptr);
// Sublasses can state if they want to notify the debugger when "ShouldStop"
// returns false. This would be handy for breakpoints where you want to
// log information and continue and is also used by the signal stop info
// to notify that a signal was received (after it checks with the process
// signal settings).
virtual bool
ShouldNotify (Event *event_ptr)
{
return false;
}
// Allow subclasses to do something intelligent right before we resume.
// The signal class will figure out if the signal should be propagated
// to the inferior process and pass that along to the debugger plug-ins.
virtual void
WillResume (lldb::StateType resume_state)
{
// By default, don't do anything
}
The support the Mach exceptions was moved into the lldb/source/Plugins/Process/Utility
folder and now doesn't polute the lldb_private::Thread class with platform
specific code.
llvm-svn: 110184
including superclass members. This involved ensuring
that access control was ignored, and ensuring that
the operands of BitCasts were properly scanned for
variables that needed importing.
Also laid the groundwork for declaring objects of
custom types; however, this functionality is disabled
for now because of a potential loop in ASTImporter.
llvm-svn: 110174
involved watching for the objective C built-in types in DWARF and making sure
when we convert the DWARF types into clang types that we use the appropriate
ASTContext types.
Added a way to find and dump types in lldb (something equivalent to gdb's
"ptype" command):
image lookup --type <TYPENAME>
This only works for looking up types by name and won't work with variables.
It also currently dumps out verbose internal information. I will modify it
to dump more appropriate user level info in my next submission.
Hookup up the "FindTypes()" functions in the SymbolFile and SymbolVendor so
we can lookup types by name in one or more images.
Fixed "image lookup --address <ADDRESS>" to be able to correctly show all
symbol context information, but it will only show this extra information when
the new "--verbose" flag is used.
Updated to latest LLVM to get a few needed fixes.
llvm-svn: 110089
of profiling code into expressions.
Modified IRForTarget to emit array and record
member accesses correctly. (Reading and writing
both work.)
llvm-svn: 110088
call Objective-C methods from expressions. Also added
some more logging to the function-calling thread plan
so that we can see the registers when a function
finishes.
Also documented things maybe a bit better.
llvm-svn: 109938
Change the prototype of ScriptInterpreter::ExecuteOneLine() to return bool
instead of void and take one additional parameter as CommandReturnObject *.
Propagate the status of one-liner execution back appropriately.
llvm-svn: 109899
lldb_private::Language class into the enumerations header so it can be freely
used by other interfaces.
Added correct objective C class support to the DWARF symbol parser. Prior to
this fix we were parsing objective C classes as C++ classes and now that the
expression parser is ready to call functions we need to make sure the objective
C classes have correct AST types.
llvm-svn: 109574
Right now we mock up the function as a variadic
function when generating the IR for the call; we need
to eventually make the function be the right type if
the type is available.
llvm-svn: 109543
it returns a list of functions as a SymbolContextList.
Rewrote the clients of SymbolContext to use this
SymbolContextList.
Rewrote some of the providers of the data to SymbolContext
to make them respect preferences as to whether the list
should be cleared first; propagated that change out.
ClangExpressionDeclMap and ClangASTSource use this new
function list to properly generate function definitions -
even for functions that don't have a prototype in the
debug information.
llvm-svn: 109476
This component is still at an early stage, but allows for simple
breakpoint/step-over operations and basic process control.
The makefiles are set up to build the plugin under Linux only.
llvm-svn: 109318
spurious guard variables on expression statics.
Updated the AST result synthesizer to eliminate the
unneeded result pointer.
Very rudimentary expressions now evaluate correctly
in the target using the new JIT-based mechanism.
llvm-svn: 109317
- When we JIT an expression, we print the disassembly
of the generated code
- When we put the structure into the target, we print
the individual entries in the structure byte for
byte.
llvm-svn: 109278
ThreadCancel in Host::WillTerminate g_monitor_thread may be blocked on a call
to pthread_cond_wait (for example, line 640). Now, by default, when a
cancellation request is serviced g_monitor_thread will again own the mutex
guarding the condition variable it was waiting on. This causes the call to
SetValue in Host::WillTerminate to hit a deadlock.
The call to SetValue does not appear to be needed, so removing it solves
the issue.
Patch from Stephen Wilson.
llvm-svn: 109228
a segfault when calling pthread_cancel. Also, sets m_read_thread_enabled if
the thread is actually spawned.
Patch from Stephen Wilson.
llvm-svn: 109227
to be executed by the inferior. This required explicit support
from RecordingMemoryManager for finding the address range
belonging to a particular function.
Also fixed a bug in DisassemblerLLVM where the disassembler
assumed there was an AddressRange available even when it was
NULL.
llvm-svn: 109209
and moved it to its own header file for cleanliness.
Added more logging to ClangFunction so that we can
diagnose crashes in the executing expression.
Added code to extract the result of the expression
from the struct that is passed to the JIT-compiled
code.
llvm-svn: 109199
invalidated. There was a race condition where the private thread would
invalidate its own pthread_t object before the parent could perform a
pthread_cancel/pthread_join sequence.
Patch from Stephen Wilson.
llvm-svn: 109131
I also added new functions to create an Objective C class, ivar and set an objective C superclass. They aren't hooked up in the DWARF parser yet. That is the next step, though I am unsure if I will do this in the DWARF parser or try and do it generically in the existing Record manipulation functions.
llvm-svn: 109130
SectionType for Section objects for DWARF.
Modified the DWARF plug-in to get the DWARF sections by SectionType so we
can safely abstract the LLDB core from section names for the various object
file formats.
Modified the SectionType definitions for .debug_pubnames and .debug_pubtypes
to use the correct case.
llvm-svn: 109054
defines that are in "llvm/Support/MachO.h". This should allow ObjectFileMachO
and ObjectContainerUniversalMachO to be able to be cross compiled in Linux.
Also did some cleanup on the ASTType by renaming it to ClangASTType and
renaming the header file. Moved a lot of "AST * + opaque clang type *"
functionality from lldb_private::Type over into ClangASTType.
llvm-svn: 109046
used by the JIT compiled expression, including the
result of the expression.
Also added a new class, ASTType, which encapsulates an
opaque Clang type and its associated AST context.
Refactored ClangExpressionDeclMap to use ASTTypes,
significantly reducing the possibility of mixups of
types from different AST contexts.
llvm-svn: 108965
to correctly unfold constant-folded global variables.
Also added code to JIT the expression. Simple
expressions are now JIT compiled successfully.
llvm-svn: 108380
Fixed the llvm build for Mac OS X builds to look in llvm/lib/Release+Asserts
output directory for all configurations (Debug, Release, BuildAndIntegration).
llvm-svn: 108289
Makefile patch to explicitly use PROJ_SRC_DIR when required. It fixes
build when obj dir is not source dir.
I also fixed a build warning in ClangResultSynthesizer.cpp.
llvm-svn: 108210
This relies on ThreadPlanStepOut working correctly, which it doesn't currently for Inlined functions, so this feature is only partially useful until we take care of Stepping Out of inlined functions.
Added an option to "thread step-in" to set the avoid regular expression. This is mostly for testing, once the Setting code is redone, we'll move this to a general setting.
llvm-svn: 108036
enabled LLVM make style building and made this compile LLDB on Mac OS X. We
can now iterate on this to make the build work on both linux and macosx.
llvm-svn: 108009
Move the "source", "alias", and "unalias" commands to "commands *".
Move "source-file" to "source list".
Added a "source info" command but it isn't implemented yet.
llvm-svn: 107751
instead of the last history item to provide a command for the "empty" command.
Use this in the source-file command to make <RETURN> continue the listing rather
than relist the first listing...
llvm-svn: 107736
line table entries that were termination entries (ones that define the bounds
of the previous entry) could be found when looking up line table entries.
We now properly skip these termination entries and check the next entry to
try for a match.
llvm-svn: 107729
interface so everybody does it the same way. Add an "exact" lookup for internal uses.
Fix up a few little cases where we weren't reporting command lookup errors correctly.
Added "b" as an alias for "breakpoint" so it doesn't collide with "bt".
llvm-svn: 107718
prepare IR for execution in the target. Wired the
expression command to use this IR transformer when
conversion to DWARF fails, and wired conversion to
DWARF to always fail (well, we don't generate any
DWARF...)
llvm-svn: 107559
- fixed 3 posix spawn attributes leaks
- fixed us always leaking CXXBaseSpecifier objects when we create class
base classes. Clang apparently copies the base classes we pass in.
Fixed some code formatting in ClangASTContext.cpp.
llvm-svn: 107459
removing it didn't cause any performance loss, and leaks were showing up
when run under instruments when we tried to re-use the buffer. We are now leak
free and still just as performant.
llvm-svn: 107453
an expression, adding code to put the value of the
last expression (if there is one) into a variable
and write the address of that variable to a global
pointer.
llvm-svn: 107419
that are in the disassembly comments since most of them are in the same
module (shared library).
Fixed a crasher that could happen when disassembling special section data.
Added an address dump style that shows the symbol context without the module
(used in the disassembly code).
llvm-svn: 107366
Added the ability to read memory from the target's object files when we aren't
running, so disassembling works before you run!
Cleaned up the API to lldb_private::Target::ReadMemory().
Cleaned up the API to the Disassembler to use actual "lldb_private::Address"
objects instead of just an "addr_t". This is nice because the Address objects
when resolved carry along their section and module which can get us the
object file. This allows Target::ReadMemory to be used when we are not
running.
Added a new lldb_private::Address dump style: DumpStyleDetailedSymbolContext
This will show a full breakdown of what an address points to. To see some
sample output, execute a "image lookup --address <addr>".
Fixed SymbolContext::DumpStopContext(...) to not require a live process in
order to be able to print function and symbol offsets.
llvm-svn: 107350
Add functions to look up debugger by id
Add global variable to lldb python module, to hold debugger id
Modify embedded Python interpreter to update the global variable with the
id of its current debugger.
Modify the char ** typemap definition in lldb.swig to accept 'None' (for NULL)
as a valid value.
The point of all this is so that, when you drop into the embedded interpreter
from the command interpreter (or when doing Python-based breakpoint commands),
there is a way for the Python side to find/get the correct debugger
instance ( by checking debugger_unique_id, then calling
SBDebugger::FindDebuggerWithID on it).
llvm-svn: 107287
Add a way for the completers to say whether the completed argument should have a space inserted after is
or not.
Added the file name completer to the "file" command.
llvm-svn: 107247
Added the ability to dump any file in the global module cache using any of
the "image dump" commands. This allows us to dump the .o files that are used
with DWARF + .o since they don't belong the the target list for the current
target.
llvm-svn: 107100
intelligently. The four name types we currently have are:
eFunctionNameTypeFull = (1 << 1), // The function name.
// For C this is the same as just the name of the function
// For C++ this is the demangled version of the mangled name.
// For ObjC this is the full function signature with the + or
// - and the square brackets and the class and selector
eFunctionNameTypeBase = (1 << 2), // The function name only, no namespaces or arguments and no class
// methods or selectors will be searched.
eFunctionNameTypeMethod = (1 << 3), // Find function by method name (C++) with no namespace or arguments
eFunctionNameTypeSelector = (1 << 4) // Find function by selector name (ObjC) names
this allows much more flexibility when setting breakoints:
(lldb) breakpoint set --name main --basename
(lldb) breakpoint set --name main --fullname
(lldb) breakpoint set --name main --method
(lldb) breakpoint set --name main --selector
The default:
(lldb) breakpoint set --name main
will inspect the name "main" and look for any parens, or if the name starts
with "-[" or "+[" and if any are found then a full name search will happen.
Else a basename search will be the default.
Fixed some command option structures so not all options are required when they
shouldn't be.
Cleaned up the breakpoint output summary.
Made the "image lookup --address <addr>" output much more verbose so it shows
all the important symbol context results. Added a GetDescription method to
many of the SymbolContext objects for the more verbose output.
llvm-svn: 107075
- Rationalized EvaluateExpression to remove a lot
of nesting; also added comments to make it easy
to find what's happening where
- Made ExecuteRawCommandString subcontract out to
EvaluateExpression
- Minor logging improvements
llvm-svn: 106703
to the debugger from GUI windows. Previously there was one global debugger
instance that could be accessed that had its own command interpreter and
current state (current target/process/thread/frame). When a GUI debugger
was attached, if it opened more than one window that each had a console
window, there were issues where the last one to setup the global debugger
object won and got control of the debugger.
To avoid this we now create instances of the lldb_private::Debugger that each
has its own state:
- target list for targets the debugger instance owns
- current process/thread/frame
- its own command interpreter
- its own input, output and error file handles to avoid conflicts
- its own input reader stack
So now clients should call:
SBDebugger::Initialize(); // (static function)
SBDebugger debugger (SBDebugger::Create());
// Use which ever file handles you wish
debugger.SetErrorFileHandle (stderr, false);
debugger.SetOutputFileHandle (stdout, false);
debugger.SetInputFileHandle (stdin, true);
// main loop
SBDebugger::Terminate(); // (static function)
SBDebugger::Initialize() and SBDebugger::Terminate() are ref counted to
ensure nothing gets destroyed too early when multiple clients might be
attached.
Cleaned up the command interpreter and the CommandObject and all subclasses
to take more appropriate arguments.
llvm-svn: 106615
I'm not sure when multiple threads enter this method but a race-condition
causing a crash in malloc can be reproduced with this little script:
echo file $(which lldb) > cmd
echo "run\nbreak set -n main\nrun\nexit" >> cmd
lldb -s cmd
It may need a few runs before it crashes though.
llvm-svn: 106544
This also fixes a bug where we were trying to copy m_string into itself
via a format string. The pointer was invalidated by m_string.resize and
lldb (sometimes) crashed inside vsnprintf.
llvm-svn: 106416
without having to use RTTI.
Removed the ThreadPlanContinue and replaced with a ShouldAutoContinue query that serves the same purpose. Having to push
another plan to assert that if there's no other indication the target should continue when this plan is popped was flakey
and error prone. This method is more stable, and fixed problems we were having with thread specific breakpoints.
llvm-svn: 106378
than picking bits out of the breakpoint options. Added BreakpointOptions::GetDescription to do this job. Some more mucking
around to keep the breakpoint listing from getting too verbose.
llvm-svn: 106262
Push this through all the breakpoint management code. Allow this to be set when the breakpoint is created.
Fix the Process classes so that a breakpoint hit that is not for a particular thread is not reported as a
breakpoint hit event for that thread.
Added a "breakpoint configure" command to allow you to reset any of the thread
specific options (or the ignore count.)
llvm-svn: 106078
Fixed the Disassemble arguments so you can't specify start address or name in multiple ways.
Fixed the command line input so you can specify the filename without "-f" even if you use other options.
llvm-svn: 106020
BreakpointLocation::GetLoadAddress() does not match the 'StoppointLocation::GetLoadAddress() const' virtual function prototype, and so, does not override the superclass function.
llvm-svn: 105927
We need to put this in LLDB since we need to vend this in our API
because our public API uses shared pointers to our private objects.
Removed a deprecated file: include/lldb/Host/Types.h
Added the new SharingPtr.cpp/.h files into source/Utility.
Added a shell script build phase that fixes up all headers in the
LLDB.framework.
llvm-svn: 105895
ickiness, and is cleaner to boot.
I'm fairly confident that I converted the comparator over properly,
and what testing I could figure out how to run seemed to pass, but it
would be great if someone in the know could check behind me.
llvm-svn: 105834
type and sub-type, or an ELF e_machine value. Also added a generic CPU type
to the arch spec class so we can have a single arch definition that the LLDB
core code can use. Previously a lot of places in the code were using the
mach-o definitions from a macosx header file.
Switches over to using "llvm/Support/MachO.h" for the llvm::MachO::XXX for the
CPU types and sub types for mach-o ArchSpecs. Added "llvm/Support/ELF.h" so
we can use the "llvm::ELF::XXX" defines for the ELF ArchSpecs.
Got rid of all CPU_TYPE_ and CPU_SUBTYPE_ defines that were previously being
used in LLDB.
llvm-svn: 105806
The top of the header file seems to indicate that this was
intended to be over at include/lldb/Core but we should be in line
with the .cpp file's location so it's include/lldb/Utility for now.
llvm-svn: 105753
Google C++ coding guidelines where includes are done as:
1 - the header file for the current source file
2 - C includes
3 - C++ includes
4 - external project includes
5 - current project includes
llvm-svn: 105748