Preserving lifetime markers isn't as important as allowing promotion,
so just drop the lifetime markers if necessary.
This also fixes an assertion failure where other parts of SROA assumed
that lifetime markers never block promotion.
Fixes https://llvm.org/bugs/show_bug.cgi?id=29139.
Differential Revision: https://reviews.llvm.org/D24854
llvm-svn: 288074
Summary:
As far as I can tell, doing our own computations in
NearestCommonDominator is a false optimization -- DomTree will build up
what appears to be exactly this data when it decides it's worthwhile.
Moreover, by building the cache ourselves, we cannot take advantage of
the cache that the domtree might have available.
In addition, I am not convinced of the correctness of the original code.
In particular, setting ResultIndex = 1 on the first addBlock instead of
setting it to 0 is quite fishy. Similarly, it's not clear to me that
setting IndexMap[Node] = 0 for every node as we walk up the tree finding
a common parent is correct. But rather than ponder over these
questions, I'd rather just make the code do the obviously-correct thing.
This patch also changes the NearestCommonDominator API a bit, improving
the names and getting rid of the boolean parameter in addBlock -- see
http://jlebar.com/2011/12/16/Boolean_parameters_to_API_functions_considered_harmful..html
Reviewers: arsenm
Subscribers: aemerson, wdng, llvm-commits
Differential Revision: https://reviews.llvm.org/D26998
llvm-svn: 288050
Summary:
The iterative algorithm for Loop Unswitching may render some of the branches unreachable in the unswitched loops.
Given the exponential nature of the algorithm, this is quite an overhead.
This patch fixes this problem by selectively unswitching only those branches within a loop that are reachable from the loop header.
Reviewers: Michael Zolothukin, Anna Thomas, Weiming Zhao.
Subscribers: llvm-commits.
Differential Revision: http://reviews.llvm.org/D26299
llvm-svn: 287925
Summary:
No need to copy the RPOT vector before using it. Switch from std::map
to SmallDenseMap. Get rid of an unused variable (TempVisited). Get rid
of a typedef, RNVector, which is now used only once.
Differential Revision: https://reviews.llvm.org/D26997
llvm-svn: 287721
Summary:
"addRequired" and "addPreserved" look very similar when squished up next
to each other -- without the newline this code looked to me like it was
addRequired'ing DominatorTreeWrapperPass twice.
Reviewers: arsenm
Subscribers: wdng, llvm-commits
Differential Revision: https://reviews.llvm.org/D26996
llvm-svn: 287720
Summary: Lets us get rid of one member variable too.
Reviewers: arsenm
Subscribers: wdng, llvm-commits
Differential Revision: https://reviews.llvm.org/D26992
llvm-svn: 287716
We visit and/or, we try to derive a lattice value for the
instruction even if one of the operands is overdefined.
If the non-overdefined value is still 'unknown' just return and wait
for ResolvedUndefsIn to "plug in" the correct value. This simplifies
the logic a bit. While I'm here add tests for missing cases.
llvm-svn: 287709
Allow using an instruction other than a mul or phi as the base for
root-finding. For example, the included testcase includes a loop
which requires using a getelementptr as the base for root-finding.
Differential Revision: https://reviews.llvm.org/D26529
llvm-svn: 287588
This patch updates a bunch of places where add_dependencies was being explicitly called to add dependencies on intrinsics_gen to instead use the DEPENDS named parameter. This cleanup is needed for a patch I'm working on to add a dependency debugging mode to the build system.
llvm-svn: 287206
Summary:
For flat loop, even if it is hot, it is not a good idea to unroll in runtime, thus we set a lower partial unroll threshold.
For hot loop, we set a higher unroll threshold and allows expensive tripcount computation to allow more aggressive unrolling.
Reviewers: davidxl, mzolotukhin
Subscribers: sanjoy, mehdi_amini, llvm-commits
Differential Revision: https://reviews.llvm.org/D26527
llvm-svn: 287186
In RateRegister of existing LSR, if a formula contains a Reg which is a SCEVAddRecExpr,
and this SCEVAddRecExpr's loop is an outerloop, the formula will be marked as Loser
and dropped.
Suppose we have an IR that %for.body is outerloop and %for.body2 is innerloop. LSR only
handle inner loop now so only %for.body2 will be handled.
Using the logic above, formula like
reg(%array) + reg({1,+, %size}<%for.body>) + 1*reg({0,+,1}<%for.body2>) will be dropped
no matter what because reg({1,+, %size}<%for.body>) is a SCEVAddRecExpr type reg related
with outerloop. Only formula like
reg(%array) + 1*reg({{1,+, %size}<%for.body>,+,1}<nuw><nsw><%for.body2>) will be kept
because the SCEVAddRecExpr related with outerloop is folded into the initial value of the
SCEVAddRecExpr related with current loop.
But in some cases, we do need to share the basic induction variable
reg{0 ,+, 1}<%for.body2> among LSR Uses to reduce the final total number of induction
variables used by LSR, so we don't want to drop the formula like
reg(%array) + reg({1,+, %size}<%for.body>) + 1*reg({0,+,1}<%for.body2>) unconditionally.
From the existing comment, it tries to avoid considering multiple level loops at the same time.
However, existing LSR only handles innermost loop, so for any SCEVAddRecExpr with a loop other
than current loop, it is an invariant and will be simple to handle, and the formula doesn't have
to be dropped.
Differential Revision: https://reviews.llvm.org/D26429
llvm-svn: 286999
When both WidenIV::getWideRecurrence and WidenIV::getExtendedOperandRecurrence
return non-null but different WideAddRec, if getWideRecurrence is called
before getExtendedOperandRecurrence, we won't bother to call
getExtendedOperandRecurrence again. But As we know it is possible that after
SCEV folding, we cannot prove the legality using the SCEVAddRecExpr returned
by getWideRecurrence. Meanwhile if getExtendedOperandRecurrence returns non-null
WideAddRec, we know for sure that it is legal to do widening for current instruction.
So it is better to put getExtendedOperandRecurrence before getWideRecurrence, which
will increase the chance of successful widening.
Differential Revision: https://reviews.llvm.org/D26059
llvm-svn: 286987
Summary:
Unfolding selects was previously done with the help of a vector
of pointers that was then sorted to be able to remove duplicates.
As this sorting depends on the memory addresses, it was
non-deterministic. A SetVector is used now so that duplicates are
removed without the need of sorting first.
Reviewers: mgrang, efriedma
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D26450
llvm-svn: 286807
All existing callers were manually extracting information out of an existing
GEP instruction and passing it to getGEPExpr(). Simplify the interface by
changing it to take a GEPOperator instead.
llvm-svn: 286751
No testcase included because I can't figure out how to reduce it.
(It's easy to write a testcase where rotation clones an assume,
but that doesn't actually seem to trigger the crash in opt on
its own; maybe an issue with the laziness?)
Differential Revision: https://reviews.llvm.org/D26434
llvm-svn: 286410
Summary:
Unrolled Loop Size calculations moved to a function.
Constant representing number of optimized instructions
when "back edge" becomes "fall through" replaced with
variable.
Some comments added.
Reviewers: mzolotukhin
Differential Revision: http://reviews.llvm.org/D21719
From: Evgeny Stupachenko <evstupac@gmail.com>
llvm-svn: 286389
Scalar Evolution asserts when not all the operands of an Add Recurrence
Expression are loop invariants. Loop Strength Reduction should only
create affine Add Recurrences, so that both the start and the step of
the expression are loop invariants.
Differential Revision: https://reviews.llvm.org/D26185
llvm-svn: 286347
Summary: For functions with profile data, we are confident that loop sink will be optimal in sinking code.
Reviewers: davidxl, hfinkel
Subscribers: mehdi_amini, mzolotukhin, llvm-commits
Differential Revision: https://reviews.llvm.org/D26155
llvm-svn: 286325
Summary:
These are good candidates for jump threading. This enables later opts
(such as InstCombine) to combine instructions from the selects with
instructions out of the selects. SimplifyCFG will fold the select
again if unfolding wasn't worth it.
Patch by James Molloy and Pablo Barrio.
Reviewers: rengolin, haicheng, sebpop
Subscribers: jojo, jmolloy, llvm-commits
Differential Revision: https://reviews.llvm.org/D26391
llvm-svn: 286236
Summary:
In some specific scenarios with well understood operand bundle types
(like `"deopt"`) it may be possible to go ahead and convert recursion to
iteration, but TailRecursionElimination does not have that logic today
so avoid doing the right thing for now.
I need some input on whether `"funclet"` operand bundles should also
block tail recursion elimination. If not, I'll allow TRE across calls
with `"funclet"` operand bundles and add a test case.
Reviewers: rnk, majnemer, nlewycky, ahatanak
Subscribers: mcrosier, llvm-commits
Differential Revision: https://reviews.llvm.org/D26270
llvm-svn: 286147
Argument evaluation order is one of the edge cases where Clang differs
from GCC, yielding different IR depending on which compiler LLVM was
built with. Make the order deterministic and tune the test to actually
verify the order instead of trying to hide it.
llvm-svn: 286126
Summary:
SmallSetVector uses DenseSet, but that means we need to reserve some
values for the empty and tombstone keys.
It seems to me we should have a general way to let us store full-range
ints inside of DenseSets, and furthermore that we probably shouldn't
silently let you add ints into DenseSets without explicitly promising
that they're in range. But that's a battle for another day; for now,
just fix this code, since we currently do something Very Bad when
compiling ffmpeg.
Fixes PR30914.
Reviewers: jeremyhu
Subscribers: llvm-commits, mzolotukhin
Differential Revision: https://reviews.llvm.org/D26323
llvm-svn: 286038
This condition is trivially always true prior to the change. The comment
at the call site makes it clear that we expect *all* of these to be '=',
'S', or 'I' so fix the code.
We have a bug I will update to track the fact that Clang doesn't warn on
this: http://llvm.org/PR13101
llvm-svn: 285930
Summary:
It was detected that the reassociate pass could enter an inifite
loop when analysing dead code. Simply skipping to analyse basic
blocks that are dead avoids such problems (and as a side effect
we avoid spending time on optimising dead code).
The solution is using the same Reverse Post Order ordering of the
basic blocks when doing the optimisations, as when building the
precalculated rank map. A nice side-effect of this solution is
that we now know that we only try to do optimisations for blocks
with ranked instructions.
Fixes https://llvm.org/bugs/show_bug.cgi?id=30818
Reviewers: llvm-commits, davide, eli.friedman, mehdi_amini
Subscribers: dberlin
Differential Revision: https://reviews.llvm.org/D26154
llvm-svn: 285793
Fixes PR 30784. Discussed with Justin, who pointed out that
in the new PassManager infrastructure we can have more fine-grained
control on which analyses we want to preserve, but this is the
best we can do with the current infrastructure.
llvm-svn: 285380
Summary: LICM may hoist instructions to preheader speculatively. Before code generation, we need to sink down the hoisted instructions inside to loop if it's beneficial. This pass is a reverse of LICM: looking at instructions in preheader and sinks the instruction to basic blocks inside the loop body if basic block frequency is smaller than the preheader frequency.
Reviewers: hfinkel, davidxl, chandlerc
Subscribers: anna, modocache, mgorny, beanz, reames, dberlin, chandlerc, mcrosier, junbuml, sanjoy, mzolotukhin, llvm-commits
Differential Revision: https://reviews.llvm.org/D22778
llvm-svn: 285308
When the loop exit condition is canonicalized as a != compaison, reuse the
debug location of the original (non canonical) comparison.
Before this patch, the debug location of the new icmp was obtained from the
loop latch terminator. This patch fixes the issue by correctly setting the
IRBuilder's "current debug location" to the location of the original compare.
Differential Revision: https://reviews.llvm.org/D25953
llvm-svn: 285185
When indvars widened an induction variable, the debug location for the loop
increment computation was incorrectly set equal to the debug loc of the loop
latch terminator.
This patch fixes the issue by propagating the correct location from the
original loop increment instruction to the new widened increment.
Differential Revision: https://reviews.llvm.org/D25872
llvm-svn: 285083
Now that MemorySSA keeps track of whether MemoryUses are optimized, use
getClobberingMemoryAccess() to check MemoryUse memory dependencies since
it should no longer be so expensive.
This is a follow-up change to https://reviews.llvm.org/D25881
llvm-svn: 285080
Summary:
When using MemorySSA, re-optimize MemoryPhis when removing a store since
this may create MemoryPhis with all identical arguments.
Also, when using MemorySSA to check if two MemoryUses are reading from
the same version of the heap, use the defining access instead of calling
getClobberingAccess, since the latter can currently result in many more
AA calls. Once the MemorySSA use optimization tracking changes are
done, we can remove this limitation, which should result in more loads
being CSE'd.
Reviewers: dberlin
Subscribers: mcrosier, llvm-commits
Differential Revision: https://reviews.llvm.org/D25881
llvm-svn: 284984
Summary:
These are good candidates for jump threading. This enables later opts
(such as InstCombine) to combine instructions from the selects with
instructions out of the selects. SimplifyCFG will fold the select
again if unfolding wasn't worth it.
Patch by James Molloy and Pablo Barrio.
Reviewers: reames, bkramer, mcrosier, gberry, haicheng, jmolloy, sebpop
Subscribers: jojo, rengolin, llvm-commits
Differential Revision: https://reviews.llvm.org/D25477
llvm-svn: 284971
When we have a loop with a known upper bound on the number of iterations, and
furthermore know that either the number of iterations will be either exactly
that upper bound or zero, then we can fully unroll up to that upper bound
keeping only the first loop test to check for the zero iteration case.
Most of the work here is in plumbing this 'max-or-zero' information from the
part of scalar evolution where it's detected through to loop unrolling. I've
also gone for the safe default of 'false' everywhere but howManyLessThans which
could probably be improved.
Differential Revision: https://reviews.llvm.org/D25682
llvm-svn: 284818
There's no agreement about this patch. I personally find the
PRE machinery of the current GVN hard enough to reason about
that I'm not sure I'll try to land this again, instead of working
on the rewrite).
llvm-svn: 284796
This change is motivated by the case when IndVarSimplify doesn't widen a comparison of IV increment because it can't prove IV increment being non-negative. We end up with a redundant trunc of the widened increment on this example.
for.body:
%i = phi i32 [ %start, %for.body.lr.ph ], [ %i.inc, %for.inc ]
%within_limits = icmp ult i32 %i, 64
br i1 %within_limits, label %continue, label %for.end
continue:
%i.i64 = zext i32 %i to i64
%arrayidx = getelementptr inbounds i32, i32* %base, i64 %i.i64
%val = load i32, i32* %arrayidx, align 4
br label %for.inc
for.inc:
%i.inc = add nsw nuw i32 %i, 1
%cmp = icmp slt i32 %i.inc, %limit
br i1 %cmp, label %for.body, label %for.end
There is a range check inside of the loop which guarantees the IV to be non-negative. NSW on the increment guarantees that the increment is also non-negative. Teach IndVarSimplify to use the range check to prove non-negativity of loop increments.
Reviewed By: sanjoy
Differential Revision: https://reviews.llvm.org/D25738
llvm-svn: 284629
In theory this could be generalized to move anything where
we prove the operands are available, but that would require
rewriting PRE. As NewGVN will hopefully come soon, and we're
trying to rewrite PRE in terms of NewGVN+MemorySSA, it's probably
not worth spending too much time on it. Fix provided by
Daniel Berlin!
llvm-svn: 284311
- Removed unused class members.
- Made class internal data private.
- Made class scoped data function scoped where it's possible.
- Replace naked new/delete with unique_ptr.
- Made resources guaranteed to be freed.
Differential Revision: https://reviews.llvm.org/D25464
llvm-svn: 284290
This is with an extra change to avoid calling MemoryLocation::get() on a call instruction.
Differential Revision: https://reviews.llvm.org/D25542
llvm-svn: 284098
This CL didn't actually address the test case in PR30499, and clang
still crashes.
Also revert dependent change "Memory-SSA cleanup of clobbers interface, NFC"
Reverts r283965 and r283967.
llvm-svn: 284093
Reappy r284044 after revert in r284051. Krzysztof fixed the error in r284049.
The original summary:
This patch tries to fully unroll loops having break statement like this
for (int i = 0; i < 8; i++) {
if (a[i] == value) {
found = true;
break;
}
}
GCC can fully unroll such loops, but currently LLVM cannot because LLVM only
supports loops having exact constant trip counts.
The upper bound of the trip count can be obtained from calling
ScalarEvolution::getMaxBackedgeTakenCount(). Part of the patch is the
refactoring work in SCEV to prevent duplicating code.
The feature of using the upper bound is enabled under the same circumstance
when runtime unrolling is enabled since both are used to unroll loops without
knowing the exact constant trip count.
llvm-svn: 284053
This patch tries to fully unroll loops having break statement like this
for (int i = 0; i < 8; i++) {
if (a[i] == value) {
found = true;
break;
}
}
GCC can fully unroll such loops, but currently LLVM cannot because LLVM only
supports loops having exact constant trip counts.
The upper bound of the trip count can be obtained from calling
ScalarEvolution::getMaxBackedgeTakenCount(). Part of the patch is the
refactoring work in SCEV to prevent duplicating code.
The feature of using the upper bound is enabled under the same circumstance
when runtime unrolling is enabled since both are used to unroll loops without
knowing the exact constant trip count.
Differential Revision: https://reviews.llvm.org/D24790
llvm-svn: 284044
An arithmetic shift can be safely changed to a logical shift if the first
operand is known positive. This allows ComputeKnownBits (and similar analysis)
to determine the sign bit of the shifted value in some cases. In turn, this
allows InstCombine to canonicalize a signed comparison (a > 0) into an equality
check (a != 0).
PR30577
Differential Revision: https://reviews.llvm.org/D25119
llvm-svn: 284013
This implements the cleanup that Danny asked to commit separately from the
previous fix to GVN-hoist in https://reviews.llvm.org/D25476#inline-219818
Tested with ninja check on x86_64-linux.
llvm-svn: 283967
This is a refreshed version of a patch that was reverted: it fixes
the problems reported in both PR30216 and PR30499, and
contains all the test-cases from both bugs.
To hoist stores past loads, we used to search for potential
conflicting loads on the hoisting path by following a MemorySSA
def-def link from the store to be hoisted to the previous
defining memory access, and from there we followed the def-use
chains to all the uses that occur on the hoisting path. The
problem is that the def-def link may point to a store that does
not alias with the store to be hoisted, and so the loads that are
walked may not alias with the store to be hoisted, and even as in
the testcase of PR30216, the loads that may alias with the store
to be hoisted are not visited.
The current patch visits all loads on the path from the store to
be hoisted to the hoisting position and uses the alias analysis
to ask whether the store may alias the load. I was not able to
use the MemorySSA functionality to ask for whether load and
store are clobbered: I'm not sure which function to call, so I
used a call to AA->isNoAlias().
Store past store is still working as before using a MemorySSA
query: I added an extra test to pr30216.ll to make sure store
past store does not regress.
Tested on x86_64-linux with check and a test-suite run.
Differential Revision: https://reviews.llvm.org/D25476
llvm-svn: 283965
For each block check that it doesn't have any uses outside of it's innermost loop.
Differential Revision: https://reviews.llvm.org/D25364
llvm-svn: 283877
The core of the change is supposed to be NFC, however it also fixes
what I believe was an undefined behavior when calling:
va_start(ValueArgs, Desc);
with Desc being a StringRef.
Differential Revision: https://reviews.llvm.org/D25342
llvm-svn: 283671
Summary: LoopSink pass uses some common function in LICM. This patch refactor the LICM code to make it usable by LoopSink pass (https://reviews.llvm.org/D22778).
Reviewers: davidxl, danielcdh, hfinkel, chandlerc
Subscribers: hfinkel, llvm-commits
Differential Revision: https://reviews.llvm.org/D24168
llvm-svn: 283134
Splitting the edge is nontrivial because of the landing pad, and we would
currently assert trying to do it.
Differential Revision: https://reviews.llvm.org/D24680
llvm-svn: 283129
Summary: Debug info should *not* affect optimization decisions. This patch updates loop unroller cost model to make it not affected by debug info.
Reviewers: davidxl, mzolotukhin
Subscribers: haicheng, llvm-commits, mzolotukhin
Differential Revision: https://reviews.llvm.org/D25098
llvm-svn: 282894
Summary:
The patch fixes regression caused by two earlier patches D18777 and D18867.
Reviewers: reames, sanjoy
Differential Revision: http://reviews.llvm.org/D24280
From: Li Huang
llvm-svn: 282650
This commit enables more unrolling for SystemZ by implementing the
SystemZTargetTransformInfo::getUnrollingPreferences() method.
It has been found that it is better to only unroll moderately, so the
DefaultUnrollRuntimeCount has been moved into UnrollingPreferences in order
to set this to a lower value for SystemZ (4).
Reviewers: Evgeny Stupachenko, Ulrich Weigand.
https://reviews.llvm.org/D24451
llvm-svn: 282570
Assumptions on UndefValue and ConstantPointerNull aren't relevant to
other users. Ignore them entirely to avoid wasting cycles walking
through their (possibly extremely extensive (cross-module)) use-lists.
It wasn't clear how to add a specific test for this, and it'll be
covered anyway by an eventual patch that asserts when trying to access
the use-list of an instance of ConstantData.
llvm-svn: 282334
and also the dependent r282175 "GVN-hoist: do not dereference null pointers"
It's causing compiler crashes building Harfbuzz (PR30499).
llvm-svn: 282199
To hoist stores past loads, we used to search for potential
conflicting loads on the hoisting path by following a MemorySSA
def-def link from the store to be hoisted to the previous
defining memory access, and from there we followed the def-use
chains to all the uses that occur on the hoisting path. The
problem is that the def-def link may point to a store that does
not alias with the store to be hoisted, and so the loads that are
walked may not alias with the store to be hoisted, and even as in
the testcase of PR30216, the loads that may alias with the store
to be hoisted are not visited.
The current patch visits all loads on the path from the store to
be hoisted to the hoisting position and uses the alias analysis
to ask whether the store may alias the load. I was not able to
use the MemorySSA functionality to ask for whether load and
store are clobbered: I'm not sure which function to call, so I
used a call to AA->isNoAlias().
Store past store is still working as before using a MemorySSA
query: I added an extra test to pr30216.ll to make sure store
past store does not regress.
Differential Revision: https://reviews.llvm.org/D24517
llvm-svn: 282168
Without this patch, GVN-hoist would think that a branch instruction is a scalar instruction
and would try to value number it. The patch filters out all such kind of irrelevant instructions.
A bit frustrating is that there is no easy way to discard all those very infrequent instructions,
a bit like isa<TerminatorInst> that stands for a large family of instructions. I'm thinking that
checking for those very infrequent other instructions would cost us more in compilation time
than just letting those instructions getting numbered, so I'm still thinking that a simpler check:
if (isa<TerminatorInst>(I))
return false;
is better than listing all the other less frequent instructions.
Differential Revision: https://reviews.llvm.org/D23929
llvm-svn: 282160
Currently, we give up on loop interchange if we encounter a flow dependency
anywhere in the loop list. Worse yet, we don't even track output dependencies.
This patch updates the dependency matrix computation to track flow and output
dependencies in the same way we track anti dependencies.
This improves an internal workload by 2.2x.
Note the loop interchange pass is off by default and it can be enabled with
'-mllvm -enable-loopinterchange'
Differential Revision: https://reviews.llvm.org/D24564
llvm-svn: 282101
Summary:
This is an NFC refactoring change as a precursor to the actual fix for rematerializing in
presence of phi.
https://reviews.llvm.org/D24399
Pasted from review:
findRematerializableChainToBasePointer changed to return the root of the
chain. instead of true or false.
move the PHI matching logic into the caller by inspecting the root return value.
This includes an assertion that the alternate root is in the liveset for the
call.
Tested with current RS4GC tests.
Reviewers: reames, sanjoy
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D24780
llvm-svn: 282023
SROA doesn't preserve the llvm.mem.parallel_loop_access metadata when it
transforms loads/stores. This patch fixes a couple occurences of this
issue.
(Partially addresses PR28981).
Differential Revision: https://reviews.llvm.org/D23549
llvm-svn: 281960
Refactor replaceDominatedUsesWith to have a flag to control whether to replace uses in BB itself.
Summary: This is in preparation for LoopSink pass which calls replaceDominatedUsesWith to update after sinking.
llvm-svn: 280949
Currently the pass updates branch weights in the IR if the function has
any PGO info (entry frequency is set). However we could still have
regions of the CFG that does not have branch weights collected (e.g. a
cold region). In this case we'd use static estimates. Since static
estimates for branches are determined independently, they are
inconsistent. Updating them can "randomly" inflate block frequencies.
I've run into this in a completely cold loop of h264ref from
SPEC. -Rpass-with-hotness showed the loop to be completely cold during
inlining (before JT) but completely hot during vectorization (after JT).
The new testcase demonstrate the problem. We check array elements
against 1, 2 and 3 in a loop. The check against 3 is the loop-exiting
check. The block names should be self-explanatory.
In this example, jump threading incorrectly updates the weight of the
loop-exiting branch to 0, drastically inflating the frequency of the
loop (in the range of billions).
There is no run-time profile info for edges inside the loop, so branch
probabilities are estimated. These are the resulting branch and block
frequencies for the loop body:
check_1 (16)
(8) / |
eq_1 | (8)
\ |
check_2 (16)
(8) / |
eq_2 | (8)
\ |
check_3 (16)
(1) / |
(loop exit) | (15)
|
(back edge)
First we thread eq_1 -> check_2 to check_3. Frequencies are updated to
remove the frequency of eq_1 from check_2 and then from the false edge
leaving check_2. Changed frequencies are highlighted with * *:
check_1 (16)
(8) / |
eq_1~ | (8)
/ |
/ check_2 (*8*)
/ (8) / |
\ eq_2 | (*0*)
\ \ |
` --- check_3 (16)
(1) / |
(loop exit) | (15)
|
(back edge)
Next we thread eq_1 -> check_3 and eq_2 -> check_3 to check_1 as new
back edges. Frequencies are updated to remove the frequency of eq_1 and
eq_3 from check_3 and then the false edge leaving check_3 (changed
frequencies are highlighted with * *):
check_1 (16)
(8) / |
eq_1~ | (8)
/ |
/ check_2 (*8*)
/ (8) / |
/-- eq_2~ | (*0*)
(back edge) |
check_3 (*0*)
(*0*) / |
(loop exit) | (*0*)
|
(back edge)
As a result, the loop exit edge ends up with 0 frequency which in turn makes
the loop header to have maximum frequency.
There are a few potential problems here:
1. The profile data seems odd. There is a single profile sample of the
loop being entered. On the other hand, there are no weights inside the
loop.
2. Based on static estimation we shouldn't set edges to "extreme"
values, i.e. extremely likely or unlikely.
3. We shouldn't create profile metadata that is calculated from static
estimation. I am not sure what policy is but it seems to make sense to
treat profile metadata as something that is known to originate from
profiling. Estimated probabilities should only be reflected in BPI/BFI.
Any one of these would probably fix the immediate problem. I went for 3
because I think it's a good policy to have and added a FIXME about 2.
Differential Revision: https://reviews.llvm.org/D24118
llvm-svn: 280713
r280425 | dehao | 2016-09-01 16:15:50 -0700 (Thu, 01 Sep 2016) | 9 lines
Refactor LICM pass in preparation for LoopSink pass.
Summary: LoopSink pass uses some common function in LICM. This patch refactor the LICM code to make it usable by LoopSink pass (https://reviews.llvm.org/D22778).
r280429 | dehao | 2016-09-01 16:31:25 -0700 (Thu, 01 Sep 2016) | 9 lines
Refactor LICM to expose canSinkOrHoistInst to LoopSink pass.
Summary: LoopSink pass shares the same canSinkOrHoistInst functionality with LICM pass. This patch exposes this function in preparation of https://reviews.llvm.org/D22778
llvm-svn: 280453
Summary: LoopSink pass shares the same canSinkOrHoistInst functionality with LICM pass. This patch exposes this function in preparation of https://reviews.llvm.org/D22778
Reviewers: chandlerc, davidxl, danielcdh
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D24171
llvm-svn: 280429
Summary: This is in preparation for LoopSink pass which calls replaceDominatedUsesWith to update after sinking.
Reviewers: chandlerc, davidxl, danielcdh
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D24170
llvm-svn: 280427
Summary: LoopSink pass uses some common function in LICM. This patch refactor the LICM code to make it usable by LoopSink pass (https://reviews.llvm.org/D22778).
Reviewers: chandlerc, davidxl, danielcdh
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D24168
llvm-svn: 280425
Previous change broke the C API for creating an EarlyCSE pass w/
MemorySSA by adding a bool parameter to control whether MemorySSA was
used or not. This broke the OCaml bindings. Instead, change the old C
API entry point back and add a new one to request an EarlyCSE pass with
MemorySSA.
llvm-svn: 280379
Summary:
Current implementation of LI verifier isn't ideal and fails to detect
some cases when LI is incorrect. For instance, it checks that all
recorded loops are in a correct form, but it has no way to check if
there are no more other (unrecorded in LI) loops in the function. This
patch adds a way to detect such bugs.
Reviewers: chandlerc, sanjoy, hfinkel
Subscribers: llvm-commits, silvas, mzolotukhin
Differential Revision: https://reviews.llvm.org/D23437
llvm-svn: 280280
Summary:
Use MemorySSA, if requested, to do less conservative memory dependency
checking.
This change doesn't enable the MemorySSA enhanced EarlyCSE in the
default pipelines, so should be NFC.
Reviewers: dberlin, sanjoy, reames, majnemer
Subscribers: mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D19821
llvm-svn: 280279
This is a first step towards supporting deopt value lowering and reporting entirely with the register allocator. I hope to build on this in the near future to support live-on-return semantics, but I have a use case which allows me to test and investigate code quality with just the live-in semantics so I've chosen to start there. For those curious, my use cases is our implementation of the "__llvm_deoptimize" function we bind to @llvm.deoptimize. I'm choosing not to hard code that fact in the patch and instead make it configurable via function attributes.
The basic approach here is modelled on what is done for the "Live In" values on stackmaps and patchpoints. (A secondary goal here is to remove one of the last barriers to merging the pseudo instructions.) We start by adding the operands directly to the STATEPOINT SDNode. Once we've lowered to MI, we extend the remat logic used by the register allocator to fold virtual register uses into StackMap::Indirect entries as needed. This does rely on the fact that the register allocator rematerializes. If it didn't along some code path, we could end up with more vregs than physical registers and fail to allocate.
Today, we *only* fold in the register allocator. This can create some weird effects when combined with arguments passed on the stack because we don't fold them appropriately. I have an idea how to fix that, but it needs this patch in place to work on that effectively. (There's some weird interaction with the scheduler as well, more investigation needed.)
My near term plan is to land this patch off-by-default, experiment in my local tree to identify any correctness issues and then start fixing codegen problems one by one as I find them. Once I have the live-in lowering fully working (both correctness and code quality), I'm hoping to move on to the live-on-return semantics. Note: I don't have any *known* miscompiles with this patch enabled, but I'm pretty sure I'll find at least a couple. Thus, the "experimental" tag and the fact it's off by default.
Differential Revision: https://reviews.llvm.org/D24000
llvm-svn: 280250
Reverse iterators to doubly-linked lists can be simpler (and cheaper)
than std::reverse_iterator. Make it so.
In particular, change ilist<T>::reverse_iterator so that it is *never*
invalidated unless the node it references is deleted. This matches the
guarantees of ilist<T>::iterator.
(Note: MachineBasicBlock::iterator is *not* an ilist iterator, but a
MachineInstrBundleIterator<MachineInstr>. This commit does not change
MachineBasicBlock::reverse_iterator, but it does update
MachineBasicBlock::reverse_instr_iterator. See note at end of commit
message for details on bundle iterators.)
Given the list (with the Sentinel showing twice for simplicity):
[Sentinel] <-> A <-> B <-> [Sentinel]
the following is now true:
1. begin() represents A.
2. begin() holds the pointer for A.
3. end() represents [Sentinel].
4. end() holds the poitner for [Sentinel].
5. rbegin() represents B.
6. rbegin() holds the pointer for B.
7. rend() represents [Sentinel].
8. rend() holds the pointer for [Sentinel].
The changes are #6 and #8. Here are some properties from the old
scheme (which used std::reverse_iterator):
- rbegin() held the pointer for [Sentinel] and rend() held the pointer
for A;
- operator*() cost two dereferences instead of one;
- converting from a valid iterator to its valid reverse_iterator
involved a confusing increment; and
- "RI++->erase()" left RI invalid. The unintuitive replacement was
"RI->erase(), RE = end()".
With vector-like data structures these properties are hard to avoid
(since past-the-beginning is not a valid pointer), and don't impose a
real cost (since there's still only one dereference, and all iterators
are invalidated on erase). But with lists, this was a poor design.
Specifically, the following code (which obviously works with normal
iterators) now works with ilist::reverse_iterator as well:
for (auto RI = L.rbegin(), RE = L.rend(); RI != RE;)
fooThatMightRemoveArgFromList(*RI++);
Converting between iterator and reverse_iterator for the same node uses
the getReverse() function.
reverse_iterator iterator::getReverse();
iterator reverse_iterator::getReverse();
Why doesn't iterator <=> reverse_iterator conversion use constructors?
In order to catch and update old code, reverse_iterator does not even
have an explicit conversion from iterator. It wouldn't be safe because
there would be no reasonable way to catch all the bugs from the changed
semantic (see the changes at call sites that are part of this patch).
Old code used this API:
std::reverse_iterator::reverse_iterator(iterator);
iterator std::reverse_iterator::base();
Here's how to update from old code to new (that incorporates the
semantic change), assuming I is an ilist<>::iterator and RI is an
ilist<>::reverse_iterator:
[Old] ==> [New]
reverse_iterator(I) (--I).getReverse()
reverse_iterator(I) ++I.getReverse()
--reverse_iterator(I) I.getReverse()
reverse_iterator(++I) I.getReverse()
RI.base() (--RI).getReverse()
RI.base() ++RI.getReverse()
--RI.base() RI.getReverse()
(++RI).base() RI.getReverse()
delete &*RI, RE = end() delete &*RI++
RI->erase(), RE = end() RI++->erase()
=======================================
Note: bundle iterators are out of scope
=======================================
MachineBasicBlock::iterator, also known as
MachineInstrBundleIterator<MachineInstr>, is a wrapper to represent
MachineInstr bundles. The idea is that each operator++ takes you to the
beginning of the next bundle. Implementing a sane reverse iterator for
this is harder than ilist. Here are the options:
- Use std::reverse_iterator<MBB::i>. Store a handle to the beginning of
the next bundle. A call to operator*() runs a loop (usually
operator--() will be called 1 time, for unbundled instructions).
Increment/decrement just works. This is the status quo.
- Store a handle to the final node in the bundle. A call to operator*()
still runs a loop, but it iterates one time fewer (usually
operator--() will be called 0 times, for unbundled instructions).
Increment/decrement just works.
- Make the ilist_sentinel<MachineInstr> *always* store that it's the
sentinel (instead of just in asserts mode). Then the bundle iterator
can sniff the sentinel bit in operator++().
I initially tried implementing the end() option as part of this commit,
but updating iterator/reverse_iterator conversion call sites was
error-prone. I have a WIP series of patches that implements the final
option.
llvm-svn: 280032
Summary:
While walking the use chain for identifying rematerializable values in RS4GC,
add the case where the current value and base value are the same PHI nodes.
This will aid rematerialization of geps and casts instead of relocating.
Reviewers: sanjoy, reames, igor
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D23920
llvm-svn: 279975
Without invalidating the entries in the MD cache we would try to access instructions
that were removed in previous iterations of hoisting.
Differential Revision: https://reviews.llvm.org/D23927
llvm-svn: 279907
Summary: Dead store elimination gets very expensive when large numbers of instructions need to be analyzed. This patch limits the number of instructions analyzed per store to the value of the memdep-block-scan-limit parameter (which defaults to 100). This resulted in no observed difference in performance of the generated code, and no change in the statistics for the dead store elimination pass, but improved compilation time on some files by more than an order of magnitude.
Reviewers: dexonsmith, bruno, george.burgess.iv, dberlin, reames, davidxl
Subscribers: davide, chandlerc, dberlin, davidxl, eraman, tejohnson, mbodart, llvm-commits
Differential Revision: https://reviews.llvm.org/D15537
llvm-svn: 279833
We can't mark ORE (a function pass) preserved as required by the loop
passes because that is how we ensure that the required passes like
LazyBFI are all available any time ORE is used. See the new comments in
the patch.
Instead we use it directly just like the inliner does in D22694.
As expected there is some additional overhead after removing the caching
provided by analysis passes. The worst case, I measured was
LNT/CINT2006_ref/401.bzip2 which regresses by 12%. As before, this only
affects -Rpass-with-hotness and not default compilation.
llvm-svn: 279829
Summary:
This fixes pr29105. The reason is that lifetime marks creates new
aliasing pointers the original ones, but before this patch aliases
were not checked in performMemCpyToMemSetOptzn.
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D23846
llvm-svn: 279769
It is invalid to hoist stores or loads if they are not executed on all paths
from the hoisting point to the exit of the function. In the testcase, there are
paths in the loop that do not execute the stores or the loads, and so hoisting
them within the loop is unsafe.
The problem is that the current implementation of hoistingFromAllPaths is
incomplete: it walks all blocks dominated by the hoisting point, and does not
return false when the loop contains a path on which the hoisted ld/st is
not executed.
Differential Revision: https://reviews.llvm.org/D23843
llvm-svn: 279732
I'm not sure if the `!isa<CallInst>(Inst) &&
!isa<TerminatorInst>(Inst))` bit is correct either, but this fixes the
case we know is broken.
llvm-svn: 279647
Summary:
This is part of a serious of patches to evolve ADCE.cpp to support
removing of unnecessary control flow.
This patch adds the ability to compute control dependences using
the iterated dominance frontier. We extend the liveness propagation
to alternate between data and control dependences until convergences.
Modify the pass manager intergation to compute the post-dominator tree
needed for iterator dominance frontier.
We still force all terminators live for now until we add code to
handlinge removing control flow in a later patch.
No changes to effective behavior with this patch
Previous patches:
D23225 [ADCE] Modify data structures to support removing control flow
D23065 [ADCE] Refactor anticipating new functionality (NFC)
D23102 [ADCE] Refactoring for new functionality (NFC)
Reviewers: nadav, majnemer, mehdi_amini
Subscribers: twoh, freik, llvm-commits
Differential Revision: https://reviews.llvm.org/D23559
llvm-svn: 279594
Summary:
In clang commit r268509 we started to invoke loop-unroll pass from the
driver even under -Os. However, we happen to not initialize optsize
thresholds properly, which si fixed with this change.
r268509 led to some big compile time regressions, because we started to
unroll some loops that we didn't unroll before. With this change I hope
to recover most of the regressions. We still are slightly slower than
before, because we do some checks here and there in loop-unrolling
before we bail out, but at least the slowdown is not that huge now.
Reviewers: hfinkel, chandlerc
Subscribers: mzolotukhin, llvm-commits
Differential Revision: https://reviews.llvm.org/D23388
llvm-svn: 279585
Summary: GVNHoist: Use the pass version of MemorySSA and preserve it.
Reviewers: sebpop, george.burgess.iv
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D23782
llvm-svn: 279504
This change needs to be reverted in order to revert -r278267 which cause performance regression on MultiSource/Benchmarks/TSVC/Symbolics-flt/Symbolics-flt from LNT and some other bechmarks.
See comments on https://reviews.llvm.org/D18777 for details.
llvm-svn: 279432
Currently nodes_iterator may dereference to a NodeType* or a NodeType&. Make them all dereference to NodeType*, which is NodeRef later.
Differential Revision: https://reviews.llvm.org/D23704
Differential Revision: https://reviews.llvm.org/D23705
llvm-svn: 279326
It causes a regression on our internal benchmark. Introduce cvp-dont-process flag and set it off by default while investigating the regression.
llvm-svn: 279082
Refactored so that a LSRUse owns its fixups, as oppsed to letting the
LSRInstance own them. This makes it easier to rate formulas for
LSRUses, since the fixups are available directly. The Offsets vector
has been removed since it was no longer necessary.
New target hook isFoldableMemAccessOffset(), which is used during formula
rating.
For SystemZ, this is useful to express that loads and stores with
float or vector types with a big/negative offset should be avoided in
loops. Without this, LSR will generate a lot of negative offsets that
would require extra instructions for loading the address.
Updated tests:
test/CodeGen/SystemZ/loop-01.ll
Reviewed by: Quentin Colombet and Ulrich Weigand.
https://reviews.llvm.org/D19152
llvm-svn: 278927
This is a mechanical change of comments in switches like fallthrough,
fall-through, or fall-thru to use the LLVM_FALLTHROUGH macro instead.
llvm-svn: 278902
IndVarSimplify::sinkUnusedInvariants calls
BasicBlock::getFirstInsertionPt on the ExitBlock and moves instructions
before it. This can return end(), so it's not safe to dereference. Add
an iterator-based overload to Instruction::moveBefore to avoid the UB.
llvm-svn: 278886
BasicBlock::Create isn't designed to take iterators (which might be
end()), but pointers (which might be nullptr). Fix the UB that was
converting end() to a BasicBlock* by calling BasicBlock::getNextNode()
in the first place.
llvm-svn: 278883
Summary:
This is part of a serious of patches to evolve ADCE.cpp to support
removing of unnecessary control flow.
This patch changes the data structures to hold liveness information to
support the additional information we will eventually need. In
particular we now have a notion of basic blocks being live because
they contain a live operations. This will eventually feed into control
dependence analysis of which branches are live. We cater to getting
from instructions to associated block information and from blocks to
information about their terminators.
This patch also changes the structure of the main loop of the
algorithm so that it alternates propagating liveness between
instructions and usign control dependence information to mark branches
live.
We force all terminators live for now until we add code to handlinge
removing control flow in a later patch.
No changes to effective behavior with this patch
Previous patches:
D23065 [ADCE] Refactor anticipating new functionality (NFC)
D23102 [ADCE] Refactoring for new functionality (NFC)
Reviewers: nadav, majnemer, mehdi_amini
Subscribers: freik, twoh, llvm-commits
Differential Revision: https://reviews.llvm.org/D23225
llvm-svn: 278807
If a loop is not rotated (for example when optimizing for size), the latch is not the backedge. If we promote an expression to post-inc form, we not only increase register pressure and add a COPY for that IV expression but for all IVs!
Motivating testcase:
void f(float *a, float *b, float *c, int n) {
while (n-- > 0)
*c++ = *a++ + *b++;
}
It's imperative that the pointer increments be located in the latch block and not the header block; if not, we cannot use post-increment loads and stores and we have to keep both the post-inc and pre-inc values around until the end of the latch which bloats register usage.
llvm-svn: 278658
IRCE has the ability to further version pre-loops and post-loops that it
created, but this isn't useful at all. This change teaches IRCE to
leave behind some metadata in the loops it creates (by cloning the main
loop) so that these new loops are not re-processed by IRCE.
Today this bug is hidden by another bug -- IRCE does not update LoopInfo
properly so the loop pass manager does not re-invoke IRCE on the loops
it split out. However, once the latter is fixed the bug addressed in
this change causes IRCE to infinite-loop in some cases (e.g. it splits
out a pre-loop, a pre-pre-loop from that, a pre-pre-pre-loop from that
and so on).
llvm-svn: 278617
Loops containing `indirectbr` may not be in simplified form, even after
running LoopSimplify. Reject then gracefully, instead of tripping an
assert.
llvm-svn: 278611
Summary:
Refactor the existing support into a LoopDataPrefetch implementation
class and a LoopDataPrefetchLegacyPass class that invokes it.
Add a new LoopDataPrefetchPass for the new pass manager that utilizes
the LoopDataPrefetch implementation class.
Reviewers: mehdi_amini
Subscribers: sanjoy, mzolotukhin, nemanjai, llvm-commits
Differential Revision: https://reviews.llvm.org/D23483
llvm-svn: 278591
`IVVisitor::visitCast` used to have the invariant that if the
instruction it was passed was a sext or zext instruction, the result of
the instruction would be wider than the induction variable. This is no
longer true after rL275037, so this change teaches `IndVarSimplify` s
implementation of `IVVisitor::visitCast` to work with the relaxed
invariant.
A corresponding change to SimplifyIndVar to preserve the said invariant
after rL275037 would also work, but given how `IVVisitor::visitCast` is
spelled (no indication of said invariant), I figured the current fix is
cleaner.
Fixes PR28935.
llvm-svn: 278584
When legal, extending trip count in the loop control logic generates better code compared to truncating IV. This is because
(1) extending trip count is a loop invariant operation (see genLoopLimit where we prove trip count is loop invariant).
(2) Scalar Evolution seems to have problems understanding trunc when computing loop trip count. So removing them allows better analysis performed in Scalar Evolution. (In particular this fixes PR 28363 which is the motivation for this change).
I am not going to perform any performance test. Any degradation caused by this should be an indication of a bug elsewhere.
To prove legality, we rely on SCEV to prove zext(trunc(IV)) == IV (or similarly for sext). If this holds, we can prove equivalence of trunc(IV)==ExitCnt (1) and IV == zext(ExitCnt). Simply take zext of boths sides of (1) and apply the proven equivalence.
This commit contains changes in a newly added testcase which was not included in the previous commit (which was reverted later on).
https://reviews.llvm.org/D23075
llvm-svn: 278421
Summary:
This is an extension of the fix in r271424. That fix dealt with builder
insert points being moved by SCEV expansion, but only for the lifetime
of the expand call. This change modifies the interface so that LSR can
safely call expand multiple times at the same insert point and do the
right thing if one of the expansions decides to move the original insert
point.
This is a fix for PR28719.
Reviewers: sanjoy
Subscribers: llvm-commits, mcrosier, mzolotukhin
Differential Revision: https://reviews.llvm.org/D23342
llvm-svn: 278413
Summary:
This fixes PR 28933 by making sure GVNHoist does not try to recreate memory
accesses when it has not actually moved them.
Reviewers: sebpop
Subscribers: llvm-commits, george.burgess.iv
Differential Revision: https://reviews.llvm.org/D23411
llvm-svn: 278401
When legal, extending trip count in the loop control logic generates better code compared to truncating IV. This is because
(1) extending trip count is a loop invariant operation (see genLoopLimit where we prove trip count is loop invariant).
(2) Scalar Evolution seems to have problems understanding trunc when computing loop trip count. So removing them allows better analysis performed in Scalar Evolution. (In particular this fixes PR 28363 which is the motivation for this change).
I am not going to perform any performance test. Any degradation caused by this should be an indication of a bug elsewhere.
To prove legality, we rely on SCEV to prove zext(trunc(IV)) == IV (or similarly for sext). If this holds, we can prove equivalence of trunc(IV)==ExitCnt (1) and IV == zext(ExitCnt). Simply take zext of boths sides of (1) and apply the proven equivalence.
https://reviews.llvm.org/D23075
llvm-svn: 278334
This is a resubmission of previously reverted r277592. It was hitting overly strong assertion in getConstantRange which was relaxed in r278217.
Use LVI to prove that adds do not wrap. The change is motivated by https://llvm.org/bugs/show_bug.cgi?id=28620 bug and it's the first step to fix that problem.
Reviewed By: sanjoy
Differential Revision: http://reviews.llvm.org/D23059
llvm-svn: 278220
The patch is to fix the bug in PR28705. It was caused by setting wrong return
value for SCEVExpander::findExistingExpansion. The return values of findExistingExpansion
have different meanings when the function is used in different ways so it is easy to make
mistake. The fix creates two new interfaces to replace SCEVExpander::findExistingExpansion,
and specifies where each interface is expected to be used.
Differential Revision: https://reviews.llvm.org/D22942
llvm-svn: 278161
One exception here is LoopInfo which must forward-declare it (because
the typedef is in LoopPassManager.h which depends on LoopInfo).
Also, some includes for LoopPassManager.h were needed since that file
provides the typedef.
Besides a general consistently benefit, the extra layer of indirection
allows the mechanical part of https://reviews.llvm.org/D23256 that
requires touching every transformation and analysis to be factored out
cleanly.
Thanks to David for the suggestion.
llvm-svn: 278079