required to be passed as different register types. E.g. <2 x i16> may need to
be passed as a larger <2 x i32> type, so formal arg lowering needs to be able
truncate it back. Likewise, when dealing with returns of these types, they need
to be widened in the appropriate way back.
Differential Revision: https://reviews.llvm.org/D60425
llvm-svn: 358032
Second half of PR40800, this patch adds DAG undef handling to fcmp instructions to match the behavior in llvm::ConstantFoldCompareInstruction, this permits constant folding of vector comparisons where some elements had been reduced to UNDEF (by SimplifyDemandedVectorElts etc.).
This involves a lot of tweaking to reduced tests as bugpoint loves to reduce fcmp arguments to undef........
Differential Revision: https://reviews.llvm.org/D60006
llvm-svn: 357765
Summary:
Teach SelectionDAG how to compute known bits of ISD::CopyFromReg if
the virtual reg used has one def only.
This can be particularly useful when calling isBaseWithConstantOffset()
with the ISD::CopyFromReg argument, as more optimizations may get enabled
in the result.
Also add a missing truncation on X86, found by testing of this patch.
Change-Id: Id1c9fceec862d118c54a5b53adf72ada5d6daefa
Reviewers: bogner, craig.topper, RKSimon
Reviewed By: RKSimon
Subscribers: lebedev.ri, nemanjai, jvesely, nhaehnle, javed.absar, jsji, jdoerfert, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59535
llvm-svn: 357745
This revision causes tests to fail under ASAN. Since the cause of the failures
is not clear (could be ASAN, could be a Clang bug, could be a bug in this
revision), the safest course of action seems to be to revert while investigating.
llvm-svn: 357667
There are 3 changes to make this correspond to the same transform in instcombine:
1. Remove the legality check - we can't create anything less legal than we started with.
2. Ease the use restriction, so we only bail out if both operands have >1 use.
3. Ease the use restriction for binops with a repeated operand (eg, mul x, x).
As discussed in D60150, there's a scalarization opportunity that will be made
easier by allowing this transform more generally.
llvm-svn: 357580
The code was previously checking that candidates for sinking had exactly
one use or were a store instruction (which can't have uses). This meant
we could sink call instructions only if they had a use.
That limitation seemed a bit arbitrary, so this patch changes it to
"instruction has zero or one use" which seems more natural and removes
the need to special-case stores.
Differential revision: https://reviews.llvm.org/D59936
llvm-svn: 357452
There's an existing optimization for x != C, but somehow it was missing
a special case for 0.
While I'm here, also cleaned up the code/comments a bit: the second
value produced by the MERGE_VALUES was actually dead, since a CMOV only
produces one result.
Differential Revision: https://reviews.llvm.org/D59616
llvm-svn: 357437
It's a little tricky to make this issue show up because
prologue/epilogue emission normally likes to push at least two
registers... but it doesn't when lr is force-spilled due to function
length. Not sure if that really makes sense, but I decided not to touch
it for now.
Differential Revision: https://reviews.llvm.org/D59385
llvm-svn: 357436
Summary:
Nodes that have no uses are eventually pruned when they are selected
from the worklist. Record nodes newly added to the worklist or DAG and
perform pruning after every combine attempt.
Reviewers: efriedma, RKSimon, craig.topper, spatel, jyknight
Reviewed By: jyknight
Subscribers: jdoerfert, jyknight, nemanjai, jvesely, nhaehnle, javed.absar, hiraditya, jsji, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D58070
llvm-svn: 357283
G_SELECT uses a 1-bit scalar for the condition, and is currently
implemented with a plain CMPri against 0. This means that values such as
0x1110 are interpreted as true, when instead the higher bits should be
treated as undefined and therefore ignored. Replace the CMPri with a
TSTri against 0x1, which performs an implicit AND, yielding the expected
result.
llvm-svn: 357153
ARMBaseInstrInfo::getNumLDMAddresses is making bad assumptions about the
memory operands of load and store-multiple operations. This doesn't
really fix the problem properly, but it's enough to prevent crashing,
at least.
Fixes https://bugs.llvm.org/show_bug.cgi?id=41231 .
Differential Revision: https://reviews.llvm.org/D59834
llvm-svn: 357109
Various SelectionDAG non-combine operations (e.g. the getNode smart
constructor and legalization) may leave dangling nodes by applying
optimizations or not fully pruning unused result values. This can
result in nodes that are never added to the worklist and therefore can
not be pruned.
Add a node inserter as the current node deleter to make sure such
nodes have the chance of being pruned.
Many minor changes, mostly positive.
llvm-svn: 356996
We currently use only VLDR/VSTR for all 64-bit loads/stores, so the
memory operands must be word-aligned. Mark aligned operations as legal
and narrow non-aligned ones to 32 bits.
While we're here, also mark non-power-of-2 loads/stores as unsupported.
llvm-svn: 356872
In r322972/r323136, the iteration here was changed to catch cases at the
beginning of a basic block... but we accidentally deleted an important
safety check. Restore that check to the way it was.
Fixes https://bugs.llvm.org/show_bug.cgi?id=41116
Differential Revision: https://reviews.llvm.org/D59680
llvm-svn: 356809
This takes sequences like "mov r4, sp; str r0, [r4]", and optimizes them
to something like "str r0, [sp]".
For regular stack variables, this optimization was already implemented:
we lower loads and stores using frame indexes, which are expanded later.
However, when constructing a call frame for a call with more than four
arguments, the existing optimization doesn't apply. We need to use
stores which are actually relative to the current value of sp, and don't
have an associated frame index.
This patch adds a special case to handle that construct. At the DAG
level, this is an ISD::STORE where the address is a CopyFromReg from SP
(plus a small constant offset).
This applies only to Thumb1: in Thumb2 or ARM mode, a regular store
instruction can access SP directly, so the COPY gets eliminated by
existing code.
The change to ARMDAGToDAGISel::SelectThumbAddrModeSP is a related
cleanup: we shouldn't pretend that it can select anything other than
frame indexes.
Differential Revision: https://reviews.llvm.org/D59568
llvm-svn: 356601
The 2nd loop calculates spill costs but reports free registers as cost
0 anyway, so there is little benefit from having a separate early
loop.
Surprisingly this is not NFC, as many register are marked regDisabled
so the first loop often picks up later registers unnecessarily instead
of the first one available in the allocation order...
Patch by Matthias Braun
llvm-svn: 356499
tMOVr and tPUSH/tPOP/tPOP_RET have register constraints which can't be
expressed in TableGen, so check them explicitly. I've unfortunately run
into issues with both of these recently; hopefully this saves some time
for someone else in the future.
Differential Revision: https://reviews.llvm.org/D59383
llvm-svn: 356303
Bail early when we don't have a preheader and also if the target is
big endian because it's written with only little endian in mind!
Differential Revision: https://reviews.llvm.org/D59368
llvm-svn: 356243
I found these by asserting in clang for any GCCBuiltin that doesn't
require mangling and requires a constant for the builtin. This means
that intrinsics are missing which don't use GCCBuiltin, don't have
builtins defined in clang, or were missing the constant annotation in
the builtin definition.
llvm-svn: 356144
When choosing whether a pair of loads can be combined into a single
wide load, we check that the load only has a sext user and that sext
also only has one user. But this can prevent the transformation in
the cases when parallel macs use the same loaded data multiple times.
To enable this, we need to fix up any other uses after creating the
wide load: generating a trunc and a shift + trunc pair to recreate
the narrow values. We also need to keep a record of which loads have
already been widened.
Differential Revision: https://reviews.llvm.org/D59215
llvm-svn: 356132
Summary:
A number of optimizations are inhibited by single-use TokenFactors not
being merged into the TokenFactor using it. This makes we consider if
we can do the merge immediately.
Most tests changes here are due to the change in visitation causing
minor reorderings and associated reassociation of paired memory
operations.
CodeGen tests with non-reordering changes:
X86/aligned-variadic.ll -- memory-based add folded into stored leaq
value.
X86/constant-combiners.ll -- Optimizes out overlap between stores.
X86/pr40631_deadstore_elision -- folds constant byte store into
preceding quad word constant store.
Reviewers: RKSimon, craig.topper, spatel, efriedma, courbet
Reviewed By: courbet
Subscribers: dylanmckay, sdardis, nemanjai, jvesely, nhaehnle, javed.absar, eraman, hiraditya, kbarton, jrtc27, atanasyan, jsji, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59260
llvm-svn: 356068
Expand MULO with constant power of two operand into a shift. The
overflow is checked with (x << shift) >> shift == x, where the right
shift will be logical for umulo and arithmetic for smulo (with
exception for multiplications by signed_min).
Differential Revision: https://reviews.llvm.org/D59041
llvm-svn: 355937
Currently the store+load is folded and both operands of the umulo
end up being constants. To avoid this getting folded away entirely,
make sure at least one operand is non-constant.
Also remove some allocas which don't seem relevant to the test.
llvm-svn: 355776
In some loops, we end up generating loop induction variables that look like:
{(-1 * (zext i16 (%i0 * %i1) to i32))<nsw>,+,1}
As opposed to the simpler:
{(zext i16 (%i0 * %i1) to i32),+,-1}
i.e we count up from -limit to 0, not the simpler counting down from limit to
0. This is because the scores, as LSR calculates them, are the same and the
second is filtered in place of the first. We end up with a redundant SUB from 0
in the code.
This patch tries to make the calculation of the setup cost a little more
thoroughly, recursing into the scev members to better approximate the setup
required. The cost function for comparing LSR costs is:
return std::tie(C1.NumRegs, C1.AddRecCost, C1.NumIVMuls, C1.NumBaseAdds,
C1.ScaleCost, C1.ImmCost, C1.SetupCost) <
std::tie(C2.NumRegs, C2.AddRecCost, C2.NumIVMuls, C2.NumBaseAdds,
C2.ScaleCost, C2.ImmCost, C2.SetupCost);
So this will only alter results if none of the other variables turn out to be
different.
Differential Revision: https://reviews.llvm.org/D58770
llvm-svn: 355597
When lowering a select_cc node where the true and false values are of type f16,
we can't use a general conditional move because the FP16 instructions do not
support conditional execution. Instead, we must ensure that the condition code
is one of the four supported by the VSEL instruction.
Differential revision: https://reviews.llvm.org/D58813
llvm-svn: 355385
The isScaledConstantInRange function takes upper and lower bounds which are
checked after dividing by the scale, so the bounds checks for half, single and
double precision should all be the same. Previously, we had wrong bounds checks
for half precision, so selected an immediate the instructions can't actually
represent.
Differential revision: https://reviews.llvm.org/D58822
llvm-svn: 355305
The new addressing mode added for the v8.2A FP16 instructions uses bit 8 of the
immediate to encode the sign of the offset, like the other FP loads/stores, so
need to be treated the same way.
Differential revision: https://reviews.llvm.org/D58816
llvm-svn: 355201
This function was not checking for the condition code variants which are
undefined if either input is NaN, so we were missing selection of the VSEL
instruction in some cases when using -fno-honor-nans or -ffast-math.
Differential revision: https://reviews.llvm.org/D58812
llvm-svn: 355199
There was a time when we couldn't dump target-specific flags such as
arm-sbrel etc, so the tests didn't check for them. We can now be more
specific in our tests.
llvm-svn: 355189
Add the same level of support as for ARM mode (i.e. still no TLS
support).
In most cases, it is sufficient to replace the opcodes with the
t2-equivalent, but there are some idiosyncrasies that I decided to
preserve because I don't understand the full implications:
* For ARM we use LDRi12 to load from constant pools, but for Thumb we
use t2LDRpci (I'm not sure if the ideal would be to use t2LDRi12 for
Thumb as well, or to use LDRcp for ARM).
* For Thumb we don't have an equivalent for MOV|LDRLIT_ga_pcrel_ldr, so
we have to generate MOV|LDRLIT_ga_pcrel plus a load from GOT.
The tests are in separate files because they're hard enough to read even
without doubling the number of checks.
llvm-svn: 355077
This adds a few extra Thumb1 opcodes to improve the peephole opimisers
ability to remove redundant cmp instructions. tADC and tSBC require
a small fixup to prevent MOVS being moved past the instruction, giving
the wrong flags.
Differential Revision: https://reviews.llvm.org/D58281
llvm-svn: 354791
More or less all the instructions defined in the v8.2a full-fp16
extension are defined as UNPREDICTABLE if you put them in an IT block
(Thumb) or use with any condition other than AL (ARM). LLVM didn't
know that, and was happy to conditionalise them.
In order to force these instructions to count as not predicable, I had
to make a small Tablegen change. The code generation back end mostly
decides if an instruction was predicable by looking for something it
can identify as a predicate operand; there's an isPredicable bit flag
that overrides that check in the positive direction, but nothing that
overrides it in the negative direction.
(I considered the alternative approach of actually removing the
predicate operand from those instructions, but thought that it would
be more painful overall for instructions differing only in data type
to have different shapes of operand list. This way, the only code that
has to notice the difference is the if-converter.)
So I've added an isUnpredicable bit alongside isPredicable, and set
that bit on the right subset of FP16 instructions, and also on the
VSEL, VMAXNM/VMINNM and VRINT[ANPM] families which should be
unpredicable for all data types.
I've included a couple of representative regression tests, both of
which previously caused an fp16 instruction to be conditionalised in
ARM state and (with -arm-no-restrict-it) to be put in an IT block in
Thumb.
Reviewers: SjoerdMeijer, t.p.northover, efriedma
Reviewed By: efriedma
Subscribers: jdoerfert, javed.absar, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D57823
llvm-svn: 354768