for pre-2.9 bitcode files. We keep x86 unaligned loads, movnt, crc32, and the
target indep prefetch change.
As usual, updating the testsuite is a PITA.
llvm-svn: 133337
When ExactBECount is a constant, use it for MaxBECount.
When MaxBECount cannot be computed, replace it with ExactBECount.
Fixes PR9424.
llvm-svn: 127342
unsigned overflow (e.g. "gep P, -1"), and while they can have
signed wrap in theoretical situations, modelling an AddRec as
not having signed wrap is going enough for any case we can
think of today. In the future if this isn't enough, we can
revisit this. Modeling them as having NUW isn't causing any
known problems either FWIW.
llvm-svn: 125410
by indvars through the scev expander.
trunc(add x, y) --> add(trunc x, y). Currently SCEV largely folds the other way
which is probably wrong, but preserved to minimize churn. Instcombine doesn't
do this fold either, demonstrating a missed optz'n opportunity on code doing
add+trunc+add.
llvm-svn: 123838
assuming that loops are in canonical form, as ScalarEvolution doesn't
depend on LoopSimplify itself. Also, with indirectbr not all loops can
be simplified. This fixes PR7416.
llvm-svn: 106389
scrounging through SCEVUnknown contents and SCEVNAryExpr operands;
instead just do a simple deterministic comparison of the precomputed
hash data.
Also, since this is more precise, it eliminates the need for the slow
N^2 duplicate detection code.
llvm-svn: 105540
Also, generalize ScalarEvolutions's min and max recognition to handle
some new forms of min and max that this change makes more common.
llvm-svn: 102234
true or false as its exit condition. These are usually eliminated by
SimplifyCFG, but the may be left around during a pass which wishes
to preserve the CFG.
llvm-svn: 96683
have trouble with an intermediate add overflowing. Also, be more conservative
about the case where the induction variable in an SLT loop exit can step past
the RHS of the SLT and overflow in a single step.
Make getSignedRange more aggressive, to recover for some common cases which
the above fixes pessimized.
This addresses rdar://7561161.
llvm-svn: 94512
where the induction variable has a non-unit stride, such as {0,+,2}, and
there are expressions such as {1,+,2} inside the loop formed with
or or add nsw operators.
llvm-svn: 82151
input filename so that opt doesn't print the input filename in the
output so that grep lines in the tests don't unintentionally match
strings in the input filename.
llvm-svn: 81537
This is a simple AliasAnalysis implementation which works by making
ScalarEvolution queries. ScalarEvolution has a more complete understanding
of arithmetic than BasicAA's collection of ad-hoc checks, so it handles
some cases that BasicAA misses, for example p[i] and p[i+1] within the
same iteration of a loop.
This is currently experimental. It may be that the main use for this pass
will be to help find cases where BasicAA can be profitably extended, or
to help in the development of the overall AliasAnalysis infrastructure,
however it's also possible that it could grow up to become a directly
useful pass.
llvm-svn: 80098
(x pred y) with more thorough code that does more complete canonicalization
before resorting to range checks. This helps it find more cases where
the canonicalized expressions match.
llvm-svn: 76671
blocks, and also exit blocks with multiple conditions (combined
with (bitwise) ands and ors). It's often infeasible to compute an
exact trip count in such cases, but a useful upper bound can often
be found.
llvm-svn: 73866
integer and floating-point opcodes, introducing
FAdd, FSub, and FMul.
For now, the AsmParser, BitcodeReader, and IRBuilder all preserve
backwards compatability, and the Core LLVM APIs preserve backwards
compatibility for IR producers. Most front-ends won't need to change
immediately.
This implements the first step of the plan outlined here:
http://nondot.org/sabre/LLVMNotes/IntegerOverflow.txt
llvm-svn: 72897
artificial "ptrtoint", as it tends to clutter up complicated
expressions. The cast operators now print both source and
destination types, which is usually sufficient.
llvm-svn: 70554
compute an upper-bound value for the trip count, in addition to
the actual trip count. Use this to allow getZeroExtendExpr and
getSignExtendExpr to fold casts in more cases.
This may eventually morph into a more general value-range
analysis capability; there are certainly plenty of places where
more complete value-range information would allow more folding.
llvm-svn: 70509
(sext i8 {-128,+,1} to i64) to i64 {-128,+,1}, where the iteration
crosses from negative to positive, but is still safe if the trip
count is within range.
llvm-svn: 70421
type to truncate to should be the number of bits of the value that are
preserved, not the number that are clobbered with sign-extension.
This fixes regressions in ldecod.
llvm-svn: 69704
to more accurately describe what it does. Expand its doxygen comment
to describe what the backedge-taken count is and how it differs
from the actual iteration count of the loop. Adjust names and
comments in associated code accordingly.
llvm-svn: 65382
Use it to safely handle less-than-or-equals-to exit conditions in loops. These
also occur when the loop exit branch is exit on true because SCEV inverses the
icmp predicate.
Use it again to handle non-zero strides, but only with an unsigned comparison
in the exit condition.
llvm-svn: 59528
If this patch causes a performance regression for anyone, please let me know,
and it can be fixed in a different way with much more effort.
llvm-svn: 59384
its callers to emit a space character before calling it when a
space is needed.
This fixes several spurious whitespace issues in
ScalarEvolution's debug dumps. See the test changes for
examples.
This also fixes odd space-after-tab indentation in the output
for switch statements, and changes calls from being printed like
this:
call void @foo( i32 %x )
to this:
call void @foo(i32 %x)
llvm-svn: 56196
continue past the first conditional branch when looking for a
relevant test. This helps it avoid using MAX expressions in
loop trip counts in more cases.
llvm-svn: 54697
version uses a new algorithm for evaluating the binomial coefficients
which is significantly more efficient for AddRecs of more than 2 terms
(see the comments in the code for details on how the algorithm works).
It also fixes some bugs: it removes the arbitrary length restriction for
AddRecs, it fixes the silent generation of incorrect code for AddRecs
which require a wide calculation width, and it fixes an issue where we
were incorrectly truncating the iteration count too far when evaluating
an AddRec expression narrower than the induction variable.
There are still a few related issues I know of: I think there's
still an issue with the SCEVExpander expansion of AddRec in terms of
the width of the induction variable used. The hack to avoid generating
too-wide integers shouldn't be necessary; instead, the callers should be
considering the cost of the expansion before expanding it (in addition
to not expanding too-wide integers, we might not want to expand
expressions that are really expensive, especially when optimizing for
size; calculating an length-17 32-bit AddRec currently generates about 250
instructions of straight-line code on X86). Also, for long 32-bit
AddRecs on X86, CodeGen really sucks at scheduling the code. I'm planning on
filing follow-up PRs for these issues.
llvm-svn: 54332
time applying to the implicit comparison in smin expressions. The
correct way to transform an inequality into the opposite
inequality, either signed or unsigned, is with a not expression.
I looked through the SCEV code, and I don't think there are any more
occurrences of this issue.
llvm-svn: 54194
SGT exit condition. Essentially, the correct way to flip an inequality
in 2's complement is the not operator, not the negation operator.
That said, the difference only affects cases involving INT_MIN.
Also, enhance the pre-test search logic to be a bit smarter about
inequalities flipped with a not operator, so it can eliminate the smax
from the iteration count for simple loops.
llvm-svn: 54184
force evaluation (ComputeIterationCountExhaustively) should be turned off.
It doesn't apply to trip-count2.ll because this file tests the brute force
evaluation.
The test for PR2364 (2008-05-25-NegativeStepToZero.ll) currently fails
showing that the patch for this bug doesn't work. I'll fix it in a few hours
with a patch for PR2088.
llvm-svn: 53792
with code that was expecting different bit widths for different values.
Make getTruncateOrZeroExtend a method on ScalarEvolution, and use it.
llvm-svn: 52248
Parse reversed smax and umax as smin and umin and express them with negative
or binary-not SCEVs (which are really just subtract under the hood).
Parse 'xor %x, -1' as (-1 - %x).
Remove dead code (ConstantInt::get always returns a ConstantInt).
Don't use getIntegerSCEV(-1, Ty). The first value is an int, then it gets
passed into a uint64_t. Instead, create the -1 directly from
ConstantInt::getAllOnesValue().
llvm-svn: 47360
variable (with step 1) and m is its final value. Then, the correct trip
count is SMAX(m,n)-n. Previously, we used SMAX(0,m-n), but m-n may
overflow and can't in general be interpreted as signed.
Patch by Nick Lewycky.
llvm-svn: 47007
to the RHS. This simple change allows to compute loop iteration count
for loops with condition similar to the one in the testcase (which seems
to be quite common).
llvm-svn: 46959
arbitrary iteration.
The patch:
1) changes SCEVSDivExpr into SCEVUDivExpr,
2) replaces PartialFact() function with BinomialCoefficient(); the
computations (essentially, the division) in BinomialCoefficient() are
performed with the apprioprate bitwidth necessary to avoid overflow;
unsigned division is used instead of the signed one.
Computations in BinomialCoefficient() require support from the code
generator for APInts. Currently, we use a hack rounding up the
neccessary bitwidth to the nearest power of 2. The hack is easy to turn
off in future.
One remaining issue: we assume the divisor of the binomial coefficient
formula can be computed accurately using 16 bits. It means we can handle
AddRecs of length up to 9. In future, we should use APInts to evaluate
the divisor.
Thanks to Nicholas for cooperation!
llvm-svn: 46955
global variables that needed to be passed in. This makes it possible to
add new global variables with only a couple changes (Makefile and llvm-dg.exp)
instead of touching every single dg.exp file.
llvm-svn: 35918
Update these tests to not use the same name even though the type of the
value differs. After PR411 hits, type planes will be gone and it will be
illegal for a name to be used twice, regardless of type.
llvm-svn: 33660
Remove "target endian/pointersize" or add "target datalayout" to make
the test parse properly or set the datalayout because defaults changes.
For PR645:
Make global names use the @ prefix.
For llvm-upgrade changes:
Fix test cases or completely remove use of llvm-upgrade for test cases
that cannot survive the new renaming or upgrade capabilities.
llvm-svn: 33533