Because HoistSpillHelper::hoistAllSpills is called in postOptimization, before the
patch we didn't want LiveRangeEdit::eliminateDeadDefs to call splitSeparateComponents
and generate unassigned new vregs. However, skipping splitSeparateComponents will make
verify-machineinstrs unhappy, so I remove the early return, and use
HoistSpillHelper::LRE_DidCloneVirtReg to assign physreg/stackslot for those new vregs.
In addition, some code reorganization to make class HoistSpillHelper privately inheriting
from LiveRangeEdit::Delegate possible. This is to be consistent with class RAGreedy and
class RegisterCoalescer.
Differential Revision: http://reviews.llvm.org/D19142
llvm-svn: 266489
After r245976, LLVM will skip the last bit test case if knows it will always be
true. However, we would still erroneously update PHI nodes with incoming values
from the MBB that would perform the final bit test, causing -verify-machineinstrs
to fail.
llvm-svn: 266479
This improves AA in the MI schduler when reason about paired instructions.
Phabricator Revision: http://reviews.llvm.org/D17098
PR26358
llvm-svn: 266462
Currently each Function points to a DISubprogram and DISubprogram has a
scope field. For member functions the scope is a DICompositeType. DIScopes
point to the DICompileUnit to facilitate type uniquing.
Distinct DISubprograms (with isDefinition: true) are not part of the type
hierarchy and cannot be uniqued. This change removes the subprograms
list from DICompileUnit and instead adds a pointer to the owning compile
unit to distinct DISubprograms. This would make it easy for ThinLTO to
strip unneeded DISubprograms and their transitively referenced debug info.
Motivation
----------
Materializing DISubprograms is currently the most expensive operation when
doing a ThinLTO build of clang.
We want the DISubprogram to be stored in a separate Bitcode block (or the
same block as the function body) so we can avoid having to expensively
deserialize all DISubprograms together with the global metadata. If a
function has been inlined into another subprogram we need to store a
reference the block containing the inlined subprogram.
Attached to https://llvm.org/bugs/show_bug.cgi?id=27284 is a python script
that updates LLVM IR testcases to the new format.
http://reviews.llvm.org/D19034
<rdar://problem/25256815>
llvm-svn: 266446
Summary:
Without MMOs, the callee-save load/store instructions were treated as
volatile by the MI post-RA scheduler and AArch64LoadStoreOptimizer.
Reviewers: t.p.northover, mcrosier
Subscribers: aemerson, rengolin, mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D17661
llvm-svn: 266439
[PPC] Previously when casting generic loads to LXV2DX/ST instructions we
would leave the original load return type in place allowing for an
assertion failure when we merge two equivalent LXV2DX nodes with
different types.
This fixes PR27350.
Reviewers: nemanjai
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D19133
llvm-svn: 266438
Perform store clustering just like load clustering. This change add
StoreClusterMutation in machine-scheduler. To control StoreClusterMutation,
added enableClusterStores() in TargetInstrInfo.h. This is enabled only on
AArch64 for now.
This change also add support for unscaled stores which were not handled in
getMemOpBaseRegImmOfs().
llvm-svn: 266437
Summary:
In the added test-case, the atomic instruction feeds into a non-machine
CopyToReg node which hasn't been selected yet, so guard against
non-machine opcodes here.
Reviewers: arsenm, tstellarAMD
Subscribers: arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D19043
llvm-svn: 266433
Summary:
This adds the necessary target code to be able to run the ir translator.
Lowering function arguments and returns is a nop and there is no support
for RegBankSelect.
Reviewers: arsenm, qcolombet
Subscribers: arsenm, joker.eph, vkalintiris, llvm-commits
Differential Revision: http://reviews.llvm.org/D19077
llvm-svn: 266356
Summary:
If a PHI has an incoming undef, we can pretend that it is equal to one
non-undef, non-self incoming value.
This is particularly relevant in combination with the StructurizeCFG
pass, which introduces PHI nodes with undefs. Previously, this lead to
branch conditions that were uniform before StructurizeCFG to become
non-uniform afterwards, which confused the SIAnnotateControlFlow
pass.
This fixes a crash when Mesa radeonsi compiles a shader from
dEQP-GLES3.functional.shaders.switch.switch_in_for_loop_dynamic_vertex
Reviewers: arsenm, tstellarAMD, jingyue
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D19013
llvm-svn: 266347
Summary:
This pass is unnecessary and overly conservative. It was motivated by
situations like
def %vreg0:SGPR_32
...
if-block:
..
def %vreg1:SGPR_32
...
else-block:
...
use %vreg0:SGPR_32
...
and similar situations with uses after the non-uniform control flow, where
we are not allowed to assign %vreg0 and %vreg1 to the same physical register,
even though in the original, thread/workitem-based CFG, it looks like the
live ranges of these registers do not overlap.
However, by the time register allocation runs, we have moved to a wave-based
CFG that accurately represents the fact that the wave may run through both
the if- and the else-block. So the live ranges of %vreg0 and %vreg1 already
overlap even without the SIFixSGPRLiveRanges pass.
In addition to proving this change correct, I have tested it with Piglit
and a small number of other tests.
Reviewers: arsenm, tstellarAMD
Subscribers: MatzeB, arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D19041
llvm-svn: 266345
FastRegAlloc works only at the basic-block level and spills all live-out
registers. Unfortunately for a stack-based cmpxchg near the spill slots, this
can perpetually clear the exclusive monitor, which means the cmpxchg will never
succeed.
I believe the only way to handle this within LLVM is by expanding the loop
post-regalloc. We don't want this in general because it severely limits the
optimisations that can be done, so we limit this to -O0 compilations.
It's an ugly hack, and about the one good point in the whole mess is that we
can treat all cmpxchg operations in the most naive way possible (seq_cst, no
clrex faff) without affecting correctness.
Should fix PR25526.
llvm-svn: 266339
Summary:
For GL_ARB_compute_shader we need to support workgroup sizes of at least 1024. However, if we want to allow large workgroup sizes, we may need to use less registers, as we have to run more waves per SIMD.
This patch adds an attribute to specify the maximum work group size the compiled program needs to support. It defaults, to 256, as that has no wave restrictions.
Reducing the number of registers available is done similarly to how the registers were reserved for chips with the sgpr init bug.
Reviewers: mareko, arsenm, tstellarAMD, nhaehnle
Subscribers: FireBurn, kerberizer, llvm-commits, arsenm
Differential Revision: http://reviews.llvm.org/D18340
Patch By: Bas Nieuwenhuizen
llvm-svn: 266337
Summary:
The code previously always used s1 as it was using the user + system SGPR
information for compute kernels. This is incorrect for Mesa shaders though,
The register should be the next SGPR after all user and system SGPR's.
We use that Mesa adds arguments for all input and system SGPR's and
take the next available SGPR for the scratch wave offset register.
Signed-off-by: Bas Nieuwenhuizen <bas@basnieuwenhuizen.nl>
Reviewers: mareko, arsenm, nhaehnle, tstellarAMD
Subscribers: qcolombet, arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D18941
Patch By: Bas Nieuwenhuizen
llvm-svn: 266336
Alias 'jic $reg, 0' to 'jrc $reg' and 'jialc $reg, 0' to 'jalrc $reg' like
binutils.
This patch was previous committed as r266055 as seemed to have caused some spurious
test failures. They did not reappear after further local testing.
llvm-svn: 266301
Summary:
The only difference between the removed tests and the pre-existing
ones, is the materialization of the zero constant, which shouldn't
matter for these cases.
Reviewers: dsanders, sdardis
Subscribers: dsanders, sdardis, llvm-commits
Differential Revision: http://reviews.llvm.org/D18693
llvm-svn: 266285
The behavior of {MIN,MAX}NAN differs from that of {MIN,MAX}NUM when only
one of the inputs is NaN: -NUM will return the non-NaN argument while
-NAN would return NaN.
It is desirable to lower to @llvm.{min,max}num to -NAN if they don't
have a native instruction for -NUM. Notably, ARMv7 NEON's vmin has the
-NAN semantics.
N.B. Of course, it is only safe to do this if the intrinsic call is
marked nnan.
llvm-svn: 266279
At some point, ARM stopped getting any benefit from ConstantHoisting because
the pass called a different variant of getIntImmCost. Reimplementing the
correct variant revealed some problems, however:
+ ConstantHoisting was modifying switch statements. This is simply invalid,
the cases must remain integer constants no matter the notional cost.
+ ConstantHoisting was mangling alloca instructions in the entry block. These
should be handled by FrameLowering, so constants actually have a cost of 0.
Worse, the resulting bitcasts meant they became dynamic allocas.
rdar://25707382
llvm-svn: 266260
It is very likely that the swiftself parameter is alive throughout most
functions function so putting it into a callee save register should
avoid spills for the callers with only a minimum amount of extra spills
in the callees.
Currently the generated code is correct but unnecessarily spills and
reloads arguments passed in callee save registers, I will address this
in upcoming patches.
This also adds a missing check that for tail calls the preserved value
of the caller must be the same as the callees parameter.
Differential Revision: http://reviews.llvm.org/D18901
llvm-svn: 266253
It is very likely that the swiftself parameter is alive throughout most
functions function so putting it into a callee save register should
avoid spills for the callers with only a minimum amount of extra spills
in the callees.
Currently the generated code is correct but unnecessarily spills and
reloads arguments passed in callee save registers, I will address this
in upcoming patches.
This also adds a missing check that for tail calls the preserved value
of the caller must be the same as the callees parameter.
Differential Revision: http://reviews.llvm.org/D18902
llvm-svn: 266252
It is very likely that the swiftself parameter is alive throughout most
functions function so putting it into a callee save register should
avoid spills for the callers with only a minimum amount of extra spills
in the callees.
Currently the generated code is correct but unnecessarily spills and
reloads arguments passed in callee save registers, I will address this
in upcoming patches.
This also adds a missing check that for tail calls the preserved value
of the caller must be the same as the callees parameter.
Differential Revision: http://reviews.llvm.org/D19007
llvm-svn: 266251
Disable LDP/STP for quads on Exynos M1 as they are not as efficient as pairs
of regular LDR/STR.
Patch by Abderrazek Zaafrani <a.zaafrani@samsung.com>.
llvm-svn: 266223
This patch fixes a bug (PR26827) when using anti-aliasing in store
merging. This sets the chain users of the component stores to point to
the new store instead of the component stores chain parent.
Reviewers: jyknight
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D18909
llvm-svn: 266217
Tests added along with implemented feature.
Note that there is a small leftover of unecessary MI sheduling issue
(more info in the review). CodeGen/AMDGPU/salu-to-valu.ll updated to fix
the false regression.
TODO: Support for TTMP quads, comma-separated syntax in "[]" and more.
Differential Revision: http://reviews.llvm.org/D17825
llvm-svn: 266205
Summary:
This is a special case for MIPS64 because the architecture requires
properly 32-bit sign-extended values in the register containers.
Additionaly, we merge consecutive trunc + AssertZExt nodes in order
to avoid unnecessary sign-extensions when the extension comes from a
type smaller than i32.
Reviewers: dsanders
Subscribers: dsanders, sdardis, llvm-commits
Differential Revision: http://reviews.llvm.org/D18893
llvm-svn: 266203
Differential Revision: http://reviews.llvm.org/D17137
This patch was reverted after the revertion of dependant patch http://reviews.llvm.org/D17068.
There was the problem with test-suite failure.
The problem is hopefully solved with dependant patch so this patch is commited again.
llvm-svn: 266179
Differential Revision: http://reviews.llvm.org/D17068
This changes contains fix for failing test-suite. So, this patch should hopefully work now.
llvm-svn: 266171
two fixes with one about error verify-regalloc reported, and
another about live range update of phi after rematerialization.
r265547:
Replace analyzeSiblingValues with new algorithm to fix its compile
time issue. The patch is to solve PR17409 and its duplicates.
analyzeSiblingValues is a N x N complexity algorithm where N is
the number of siblings generated by reg splitting. Although it
causes siginificant compile time issue when N is large, it is also
important for performance since it removes redundent spills and
enables rematerialization.
To solve the compile time issue, the patch removes analyzeSiblingValues
and replaces it with lower cost alternatives containing two parts. The
first part creates a new spill hoisting method in postOptimization of
register allocation. It does spill hoisting at once after all the spills
are generated instead of inside every instance of selectOrSplit. The
second part queries the define expr of the original register for
rematerializaiton and keep it always available during register allocation
even if it is already dead. It deletes those dead instructions only in
postOptimization. With the two parts in the patch, it can remove
analyzeSiblingValues without sacrificing performance.
Patches on top of r265547:
r265610 "Fix the compare-clang diff error introduced by r265547."
r265639 "Fix the sanitizer bootstrap error in r265547."
r265657 "InlineSpiller.cpp: Escap \@ in r265547. [-Wdocumentation]"
Differential Revision: http://reviews.llvm.org/D15302
Differential Revision: http://reviews.llvm.org/D18934
Differential Revision: http://reviews.llvm.org/D18935
Differential Revision: http://reviews.llvm.org/D18936
llvm-svn: 266162
Initialization of m0 is emitted for each LDS operation, so
every block with LDS usage ends up with one. MachineLICM
used to fail to hoist this out of the loop, so every loop
iteration with LDS usage in it would re-initialize it.
This seems to be fixed now, so add a test to make sure that
it stays this way.
llvm-svn: 266156
This state is no longer useful and not guaranteed to be valid in later
codegen passes. For example, see the added test, which would print a
savepoint of %bb.-1 without this change, and crashes with a
use-after-free error under ASan if you apply the recycling allocator
patch from llvm.org/PR26808.
llvm-svn: 266150