expressions. This is mostly a simple refact, splitting the main "start
a lambda expression" function into smaller chunks that are driven
either from the parser (Sema::ActOnLambdaExpr) or during AST
transformation (TreeTransform::TransformLambdaExpr). A few minor
interesting points:
- Added new entry points for TreeTransform, so that we can
explicitly establish the link between the lambda closure type in the
template and the lambda closure type in the instantiation.
- Added a bit into LambdaExpr specifying whether it had an explicit
result type or not. We should have had this anyway.
This code is 'lightly' tested.
llvm-svn: 150417
instead of having a special-purpose function.
- ActOnCXXDirectInitializer, which was mostly duplication of
AddInitializerToDecl (leading e.g. to PR10620, which Eli fixed a few days
ago), is dropped completely.
- MultiInitializer, which was an ugly hack I added, is dropped again.
- We now have the infrastructure in place to distinguish between
int x = {1};
int x({1});
int x{1};
-- VarDecl now has getInitStyle(), which indicates which of the above was used.
-- CXXConstructExpr now has a flag to indicate that it represents list-
initialization, although this is not yet used.
- InstantiateInitializer was renamed to SubstInitializer and simplified.
- ActOnParenOrParenListExpr has been replaced by ActOnParenListExpr, which
always produces a ParenListExpr. Placed that so far failed to convert that
back to a ParenExpr containing comma operators have been fixed. I'm pretty
sure I could have made a crashing test case before this.
The end result is a (I hope) considerably cleaner design of initializers.
More importantly, the fact that I can now distinguish between the various
initialization kinds means that I can get the tricky generalized initializer
test cases Johannes Schaub supplied to work. (This is not yet done.)
This commit passed self-host, with the resulting compiler passing the tests. I
hope it doesn't break more complicated code. It's a pretty big change, but one
that I feel is necessary.
llvm-svn: 150318
to the pattern template that it came from, otherwise we had this situation:
template <typename T1, typename T2>
struct S {
};
template <typename T>
struct S<T, int> {
};
void f() {
S<int, int> s; // location of declaration "S<int, int>" was of "S<T1, T2>" not "S<T, int>"
}
llvm-svn: 150290
iff its substitution contains an unexpanded parameter pack. This has the effect
that we now reject declarations such as this (which we used to crash when
expanding):
template<typename T> using Int = int;
template<typename ...Ts> void f(Int<Ts> ...ints);
The standard is inconsistent on how this case should be treated.
llvm-svn: 148905
we have a redeclarable type, and only use the new virtual versions
(getPreviousDeclImpl() and getMostRecentDeclImpl()) when we don't have
that type information. This keeps us from penalizing users with strict
type information (and is the moral equivalent of a "final" method).
Plus, settle on the names getPreviousDecl() and getMostRecentDecl()
throughout.
llvm-svn: 148187
Example:
template <class T>
class A {
public:
template <class U> void f(U p) { }
template <> void f(int p) { } // <== class scope specialization
};
This extension is necessary to parse MSVC standard C++ headers, MFC and ATL code.
BTW, with this feature in, clang can parse (-fsyntax-only) all the MSVC 2010 standard header files without any error.
llvm-svn: 137573
to represent a fully-substituted non-type template parameter.
This should improve source fidelity, as well as being generically
useful for diagnostics and such.
llvm-svn: 135243
type/expression/template argument/etc. is instantiation-dependent if
it somehow involves a template parameter, even if it doesn't meet the
requirements for the more common kinds of dependence (dependent type,
type-dependent expression, value-dependent expression).
When we see an instantiation-dependent type, we know we always need to
perform substitution into that instantiation-dependent type. This
keeps us from short-circuiting evaluation in places where we
shouldn't, and lets us properly implement C++0x [temp.type]p2.
In theory, this would also allow us to properly mangle
instantiation-dependent-but-not-dependent decltype types per the
Itanium C++ ABI, but we aren't quite there because we still mangle
based on the canonical type in cases like, e.g.,
template<unsigned> struct A { };
template<typename T>
void f(A<sizeof(sizeof(decltype(T() + T())))>) { }
template void f<int>(A<sizeof(sizeof(int))>);
and therefore get the wrong answer.
llvm-svn: 134225
for a template template parameter.
Uses to follow.
I've also made the uniquing of SubstTemplateTemplateParmPacks
use a ContextualFoldingSet as a minor space efficiency.
llvm-svn: 134137
before the template parameters have acquired a proper context (e.g.,
because the enclosing context has yet to be built), provide empty
parameter lists for all outer template parameter scopes to inhibit any
substitution for those template parameters. Fixes PR9643 /
<rdar://problem/9251019>.
llvm-svn: 133055
- Removed fix-it hints from template instaniations since changes to the
templates are rarely helpful.
- Changed the caret in template instaniations from the class/struct name to the
class/struct keyword, matching the other warnings.
- Do not offer fix-it hints when multiple declarations disagree. Warnings are
still given.
- Once a definition is found, offer a fix-it hint to all previous declarations
with wrong tag.
- Declarations that disagree with a previous definition will get a fix-it hint
to change the declaration.
llvm-svn: 132831
to determine outer template arguments lists for template
parameters. This is actually the problem behind PR9643, which I have
yet to figure out how to fix.
llvm-svn: 131822
also consider whether any of the parameter types (as written, prior to
decay) are dependent. Fixes PR9880 and <rdar://problem/9408413>.
llvm-svn: 131099
- New isDefined() function checks for deletedness
- isThisDeclarationADefinition checks for deletedness
- New doesThisDeclarationHaveABody() does what
isThisDeclarationADefinition() used to do
- The IsDeleted bit is not propagated across redeclarations
- isDeleted() now checks the canoncial declaration
- New isDeletedAsWritten() does what it says on the tin.
- isUserProvided() now correct (thanks Richard!)
This fixes the bug that we weren't catching
void foo() = delete;
void foo() {}
as being a redefinition.
llvm-svn: 131013
parameter node and use this to correctly mangle parameter
references in function template signatures.
A follow-up patch will improve the storage usage of these
fields; here I've just done the lazy thing.
llvm-svn: 130669
accompanying fixes to make it work today.
The core of this patch is to provide a link from a TemplateTypeParmType
back to the TemplateTypeParmDecl node which declared it. This in turn
provides much more precise information about the type, where it came
from, and how it functions for AST consumers.
To make the patch work almost a year after its first attempt, it needed
serialization support, and it now retains the old getName() interface.
Finally, it requires us to not attempt to instantiate the type in an
unsupported friend decl -- specifically those coming from template
friend decls but which refer to a specific type through a dependent
name.
A cleaner representation of the last item would be to build
FriendTemplateDecl nodes for these, storing their template parameters
etc, and to perform proper instantation of them like any other template
declaration. They can still be flagged as unsupported for the purpose of
access checking, etc.
This passed an asserts-enabled bootstrap for me, and the reduced test
case mentioned in the original review thread no longer causes issues,
likely fixed at somewhere amidst the 24k revisions that have elapsed.
llvm-svn: 130628
template name as the result of substitution. The qualifier is handled
separately by the tree transformer, so we would end up in an
inconsistent state.
This is actually the last bit of PR9016, and possibly also fixes
PR8965. It takes Boost.Icl from "epic fail" down to a single failure.
llvm-svn: 127108
template (not a specialization!), use the "injected" function template
arguments, which correspond to the template parameters of the function
template. This is required when substituting into the default template
parameters of template template parameters within a function template.
Fixes PR9016.
llvm-svn: 127092
source-location-preserving
TreeTransform::TranformNestedNameSpecifierLoc(). No functionality
change: the victim had no callers (that themselves had callers) anyway.
llvm-svn: 126853
of an expansion, and we have a paramameter that is not a parameter
pack, don't suppress substitution of parameter packs within this
context.
llvm-svn: 126819
nested-name-speciciers within elaborated type names, e.g.,
enum clang::NestedNameSpecifier::SpecifierKind
Fixes in this iteration include:
(1) Compute the type-source range properly for a dependent template
specialization type that starts with "template template-id ::", as
in a member access expression
dep->template f<T>::f()
This is a latent bug I triggered with this change (because now we're
checking the computed source ranges for dependent template
specialization types). But the real problem was...
(2) Make sure to set the qualifier range on a dependent template
specialization type appropriately. This will go away once we push
nested-name-specifier locations into dependent template
specialization types, but it was the source of the
valgrind errors on the buildbots.
llvm-svn: 126765
information for qualifier type names throughout the parser to address
several problems.
The commit message from r126737:
Push nested-name-specifier source location information into elaborated
name types, e.g., "enum clang::NestedNameSpecifier::SpecifierKind".
Aside from the normal changes, this also required some tweaks to the
parser. Essentially, when we're looking at a type name (via
getTypeName()) specifically for the purpose of creating an annotation
token, we pass down the flag that asks for full type-source location
information to be stored within the returned type. That way, we retain
source-location information involving nested-name-specifiers rather
than trying to reconstruct that information later, long after it's
been lost in the parser.
With this change, test/Index/recursive-cxx-member-calls.cpp is showing
much improved results again, since that code has lots of
nested-name-specifiers.
llvm-svn: 126748
name types, e.g., "enum clang::NestedNameSpecifier::SpecifierKind".
Aside from the normal changes, this also required some tweaks to the
parser. Essentially, when we're looking at a type name (via
getTypeName()) specifically for the purpose of creating an annotation
token, we pass down the flag that asks for full type-source location
information to be stored within the returned type. That way, we retain
source-location information involving nested-name-specifiers rather
than trying to reconstruct that information later, long after it's
been lost in the parser.
With this change, test/Index/recursive-cxx-member-calls.cpp is showing
much improved results again, since that code has lots of
nested-name-specifiers.
llvm-svn: 126737
making them be template instantiated in a more normal way and
make them handle attributes like other decls.
This fixes the used/unused label handling stuff, making it use
the same infrastructure as other decls.
llvm-svn: 125771
access control errors into SFINAE errors, so that the trait provides
enough support to implement the C++0x std::is_convertible type trait.
To get there, the SFINAETrap now knows how to set up a SFINAE context
independent of any template instantiations or template argument
deduction steps, and (separately) can set a Sema flag to translate
access control errors into SFINAE errors. The latter can also be
useful if we decide that access control errors during template argument
deduction should cause substitution failure (rather than a hard error)
as has been proposed for C++0x.
llvm-svn: 124446