See PR48656.
The implementation of the template instantiation of requires expressions
was incorrectly trying to get the expression from an 'ExprRequirement'
before checking if it was an error state.
Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
Reviewed By: rsmith
Differential Revision: https://reviews.llvm.org/D107399
Word on the grapevine was that the committee had some discussion that
ended with unanimous agreement on eliminating relational function pointer comparisons.
We wanted to be bold and just ban all of them cold turkey.
But then we chickened out at the last second and are going for
eliminating just the spaceship overload candidate instead, for now.
See D104680 for reference.
This should be fine and "safe", because the only possible semantic change this
would cause is that overload resolution could possibly be ambiguous if
there was another viable candidate equally as good.
But to save face a little we are going to:
* Issue an "error" for three-way comparisons on function pointers.
But all this is doing really is changing one vague error message,
from an "invalid operands to binary expression" into an
"ordered comparison of function pointers", which sounds more like we mean business.
* Otherwise "warn" that comparing function pointers like that is totally
not cool (unless we are told to keep quiet about this).
Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
Reviewed By: rsmith
Differential Revision: https://reviews.llvm.org/D104892
This change caused build errors related to move-only __block variables,
see discussion on https://reviews.llvm.org/D99696
> This expands NRVO propagation for more cases:
>
> Parse analysis improvement:
> * Lambdas and Blocks with dependent return type can have their variables
> marked as NRVO Candidates.
>
> Variable instantiation improvements:
> * Fixes crash when instantiating NRVO variables in Blocks.
> * Functions, Lambdas, and Blocks which have auto return type have their
> variables' NRVO status propagated. For Blocks with non-auto return type,
> as a limitation, this propagation does not consider the actual return
> type.
>
> This also implements exclusion of VarDecls which are references to
> dependent types.
>
> Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
>
> Reviewed By: Quuxplusone
>
> Differential Revision: https://reviews.llvm.org/D99696
This also reverts the follow-on change which was hard to tease apart
form the one above:
> "[clang] Implement P2266 Simpler implicit move"
>
> This Implements [[http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p2266r1.html|P2266 Simpler implicit move]].
>
> Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
>
> Reviewed By: Quuxplusone
>
> Differential Revision: https://reviews.llvm.org/D99005
This reverts commits 1e50c3d785 and
bf20631782.
This reworks a small set of tests, as preparatory work for implementing
P2266.
* Run for more standard versions, including c++2b.
* Normalize file names and run commands.
* Adds some extra tests.
New Coroutine tests taken from Aaron Puchert's D68845.
Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
Reviewed By: thakis
Differential Revision: https://reviews.llvm.org/D99225
See PR45088.
Compound requirement type constraints were using decltype(E) instead of
decltype((E)), as per `[expr.prim.req]p1.3.3`.
Since neither instantiation nor type dependence should matter for
the constraints, this uses an approach where a `decltype` type is not built,
and just the canonical type of the expression after template instantiation
is used on the requirement.
Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
Reviewed By: rsmith
Differential Revision: https://reviews.llvm.org/D98160
For a default visibility external linkage definition, dso_local is set for ELF
-fno-pic/-fpie and COFF and Mach-O. Since default clang -cc1 for ELF is similar
to -fpic ("PIC Level" is not set), this nuance causes unneeded binary format differences.
To make emitted IR similar, ELF -cc1 -fpic will default to -fno-semantic-interposition,
which sets dso_local for default visibility external linkage definitions.
To make this flip smooth and enable future (dso_local as definition default),
this patch replaces (function) `define ` with `define{{.*}} `,
(variable/constant/alias) `= ` with `={{.*}} `, or inserts appropriate `{{.*}} `.
For a definition (of most linkage types), dso_local is set for ELF -fno-pic/-fpie
and COFF, but not for Mach-O. This nuance causes unneeded binary format differences.
This patch replaces (function) `define ` with `define{{.*}} `,
(variable/constant/alias) `= ` with `={{.*}} `, or inserts appropriate `{{.*}} `
if there is an explicit linkage.
* Clang will set dso_local for Mach-O, which is currently implied by TargetMachine.cpp. This will make COFF/Mach-O and executable ELF similar.
* Eventually I hope we can make dso_local the textual LLVM IR default (write explicit "dso_preemptable" when applicable) and -fpic ELF will be similar to everything else. This patch helps move toward that goal.
Fix bogus diagnostics that would get confused and think a "no viable
fuctions" case was an "undeclared identifiers" case, resulting in an
incorrect diagnostic preceding the correct one. Use overload resolution
to determine which function we should select when we can find call
candidates from a dependent base class. Make the diagnostics for a call
that could call a function from a dependent base class more specific,
and use a different diagnostic message for the case where the call
target is instead declared later in the same class. Plus some minor
diagnostic wording improvements.
The static_assert in "libcxx/include/memory" was the main offender here,
but then I figured I might as well `git grep -i instantat` and fix all
the instances I found. One was in user-facing HTML documentation;
the rest were in comments or tests.
The tests don't specify a triple in some cases, since they shouldn't be
necessary, so I've updated the tests to detect via macro when they are
running on win32 to give the slightly altered diagnostic.
In the wake of https://reviews.llvm.org/D89559, we discovered that a
couple of tests (the ones modified below to have additional triple
versions) would fail on Win32, for 1 of two reasons. We seem to not
have a win32 buildbot anymore, so the triple is to make sure this
doesn't get broken in the future.
First, two of the three 'note-candidate' functions weren't appropriately
skipping the remaining conversion functions.
Second, in 1 situation (note surrogate candidates) we actually print the
type of the conversion operator. The two tests that ran into that
needed updating to make sure it printed the proper one in the win32
case.
callee in constant evaluation.
We previously made a deep copy of function parameters of class type when
passing them, resulting in the destructor for the parameter applying to
the original argument value, ignoring any modifications made in the
function body. This also meant that the 'this' pointer of the function
parameter could be observed changing between the caller and the callee.
This change completely reimplements how we model function parameters
during constant evaluation. We now model them roughly as if they were
variables living in the caller, albeit with an artificially reduced
scope that covers only the duration of the function call, instead of
modeling them as temporaries in the caller that we partially "reparent"
into the callee at the point of the call. This brings some minor
diagnostic improvements, as well as significantly reduced stack usage
during constant evaluation.
callee in constant evaluation.
We previously made a deep copy of function parameters of class type when
passing them, resulting in the destructor for the parameter applying to
the original argument value, ignoring any modifications made in the
function body. This also meant that the 'this' pointer of the function
parameter could be observed changing between the caller and the callee.
This change completely reimplements how we model function parameters
during constant evaluation. We now model them roughly as if they were
variables living in the caller, albeit with an artificially reduced
scope that covers only the duration of the function call, instead of
modeling them as temporaries in the caller that we partially "reparent"
into the callee at the point of the call. This brings some minor
diagnostic improvements, as well as significantly reduced stack usage
during constant evaluation.
callee in constant evaluation.
We previously made a deep copy of function parameters of class type when
passing them, resulting in the destructor for the parameter applying to
the original argument value, ignoring any modifications made in the
function body. This also meant that the 'this' pointer of the function
parameter could be observed changing between the caller and the callee.
This change completely reimplements how we model function parameters
during constant evaluation. We now model them roughly as if they were
variables living in the caller, albeit with an artificially reduced
scope that covers only the duration of the function call, instead of
modeling them as temporaries in the caller that we partially "reparent"
into the callee at the point of the call. This brings some minor
diagnostic improvements, as well as significantly reduced stack usage
during constant evaluation.
variable's initializer is not known.
The hope is that a better diagnostic for this case will reduce the rate
at which duplicates of non-bug PR41093 are reported.
parameters with default arguments.
Directly follow the wording by relaxing the AST invariant that all
parameters after one with a default arguemnt also have default
arguments, and removing the diagnostic on missing default arguments
on a pack-expanded parameter following a parameter with a default
argument.
Testing also revealed that we need to special-case explicit
specializations of templates with a pack following a parameter with a
default argument, as such explicit specializations are otherwise
impossible to write. The standard wording doesn't address this case; a
issue has been filed.
This exposed a bug where we would briefly consider a parameter to have
no default argument while we parse a delay-parsed default argument for
that parameter, which is also fixed.
Partially incorporates a patch by Raul Tambre.
the expression that is passed to it if it has a function type or array
type
lvalue-to-rvalue conversion should only be applied to non-function,
non-array types, but clang was applying the conversion to discarded
value expressions of array types.
rdar://problem/61203170
Differential Revision: https://reviews.llvm.org/D78134
Previously we implemented non-standard disambiguation rules to
distinguish an enum-base from a bit-field but otherwise treated a :
after an elaborated-enum-specifier as introducing an enum-base. That
misparses various examples (anywhere an elaborated-type-specifier can
appear followed by a colon, such as within a ternary operator or
_Generic).
We now implement the C++11 rules, with the old cases accepted as
extensions where that seemed reasonable. These amount to:
* an enum-base must always be accompanied by an enum definition (except
in a standalone declaration of the form 'enum E : T;')
* in a member-declaration, 'enum E :' always introduces an enum-base,
never a bit-field
* in a type-specifier (or similar context), 'enum E :' is not
permitted; the colon means whatever else it would mean in that
context.
Fixed underlying types for enums are also permitted in Objective-C and
under MS extensions, plus as a language extension in all other modes.
The behavior in ObjC and MS extensions modes is unchanged (but the
bit-field disambiguation is a bit better); remaining language modes
follow the C++11 rules.
Fixes PR45726, PR39979, PR19810, PR44941, and most of PR24297, plus C++
core issues 1514 and 1966.
Summary:
Before this PR, `modernize-use-using` would transform the typedef in
```
template <typename a> class TemplateKeyword {
typedef typename a::template f<> e;
typedef typename a::template f<>::d e2;
};
```
into
```
template <typename a> class TemplateKeyword {
using d = typename a::b<>;
using d2 = typename a::template a::b<>::c;
};
```
The first one is missing the `template` keyword,
the second one has an extra `a::` scope. Both result
in compilation errors.
Reviewers: aaron.ballman, alexfh, hokein, njames93
Subscribers: xazax.hun, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D78139
Compute and propagate conversion kind to diagnostics helper in C++
to provide more specific diagnostics about incorrect implicit
conversions in assignments, initializations, params, etc...
Duplicated some diagnostics as errors because C++ is more strict.
Tags: #clang
Differential Revision: https://reviews.llvm.org/D74116
user interface and documentation, and update __cplusplus for C++20.
WG21 considers the C++20 standard to be finished (even though it still
has some more steps to pass through in the ISO process).
The old flag names are accepted for compatibility, as usual, and we
still have lots of references to C++2a in comments and identifiers;
those can be cleaned up separately.
The C++ rules briefly allowed this, but the rule changed nearly 10 years
ago and we never updated our implementation to match. However, we've
warned on this by default for a long time, and no other compiler accepts
(even as an extension).
Summary:
Clang -fpic defaults to -fno-semantic-interposition (GCC -fpic defaults
to -fsemantic-interposition).
Users need to specify -fsemantic-interposition to get semantic
interposition behavior.
Semantic interposition is currently a best-effort feature. There may
still be some cases where it is not handled well.
Reviewers: peter.smith, rnk, serge-sans-paille, sfertile, jfb, jdoerfert
Subscribers: dschuff, jyknight, dylanmckay, nemanjai, jvesely, kbarton, fedor.sergeev, asb, rbar, johnrusso, simoncook, sabuasal, niosHD, jrtc27, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, arphaman, PkmX, jocewei, jsji, Jim, lenary, s.egerton, pzheng, sameer.abuasal, apazos, luismarques, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D73865
A constrained function with an auto return type would have it's definition
instantiated in order to deduce the auto return type before the constraints
are checked.
Move the constraints check after the return type deduction.
We previously checked for containsUnexpandedParameterPack in CSEs by observing the property
in the converted arguments of the CSE. This may not work if the argument is an expanded
type-alias that contains a pack-expansion (see added test).
Check the as-written arguments when determining containsUnexpandedParameterPack and isInstantiationDependent.
As per P1980R0, constraint expressions are unevaluated operands, and their constituent atomic
constraints only become constant evaluated during satisfaction checking.
Change the evaluation context during parsing and instantiation of constraints to unevaluated.
Now with concepts support merged and mostly complete, we do not need -fconcepts-ts
(which was also misleading as we were not implementing the TS) and can enable
concepts features under C++2a. A warning will be generated if users still attempt
to use -fconcepts-ts.
This patch implements P1141R2 "Yet another approach for constrained declarations".
General strategy for this patch was:
- Expand AutoType to include optional type-constraint, reflecting the wording and easing the integration of constraints.
- Replace autos in parameter type specifiers with invented parameters in GetTypeSpecTypeForDeclarator, using the same logic
previously used for generic lambdas, now unified with abbreviated templates, by:
- Tracking the template parameter lists in the Declarator object
- Tracking the template parameter depth before parsing function declarators (at which point we can match template
parameters against scope specifiers to know if we have an explicit template parameter list to append invented parameters
to or not).
- When encountering an AutoType in a parameter context we check a stack of InventedTemplateParameterInfo structures that
contain the info required to create and accumulate invented template parameters (fields that were already present in
LambdaScopeInfo, which now inherits from this class and is looked up when an auto is encountered in a lambda context).
Resubmit after fixing MSAN failures caused by incomplete initialization of AutoTypeLocs in TypeSpecLocFiller.
Differential Revision: https://reviews.llvm.org/D65042
This patch implements P1141R2 "Yet another approach for constrained declarations".
General strategy for this patch was:
- Expand AutoType to include optional type-constraint, reflecting the wording and easing the integration of constraints.
- Replace autos in parameter type specifiers with invented parameters in GetTypeSpecTypeForDeclarator, using the same logic
previously used for generic lambdas, now unified with abbreviated templates, by:
- Tracking the template parameter lists in the Declarator object
- Tracking the template parameter depth before parsing function declarators (at which point we can match template
parameters against scope specifiers to know if we have an explicit template parameter list to append invented parameters
to or not).
- When encountering an AutoType in a parameter context we check a stack of InventedTemplateParameterInfo structures that
contain the info required to create and accumulate invented template parameters (fields that were already present in
LambdaScopeInfo, which now inherits from this class and is looked up when an auto is encountered in a lambda context).
Resubmit after incorrect check in NonTypeTemplateParmDecl broke lldb.
Differential Revision: https://reviews.llvm.org/D65042
This patch implements P1141R2 "Yet another approach for constrained declarations".
General strategy for this patch was:
- Expand AutoType to include optional type-constraint, reflecting the wording and easing the integration of constraints.
- Replace autos in parameter type specifiers with invented parameters in GetTypeSpecTypeForDeclarator, using the same logic
previously used for generic lambdas, now unified with abbreviated templates, by:
- Tracking the template parameter lists in the Declarator object
- Tracking the template parameter depth before parsing function declarators (at which point we can match template
parameters against scope specifiers to know if we have an explicit template parameter list to append invented parameters
to or not).
- When encountering an AutoType in a parameter context we check a stack of InventedTemplateParameterInfo structures that
contain the info required to create and accumulate invented template parameters (fields that were already present in
LambdaScopeInfo, which now inherits from this class and is looked up when an auto is encountered in a lambda context).
Differential Revision: https://reviews.llvm.org/D65042