Fixes PR15570: SEGV: SCEV back-edge info invalid after dead code removal.
Indvars creates a SCEV expression for the loop's back edge taken
count, then determines that the comparison is always true and
removes it.
When loop-unroll asks for the expression, it contains a NULL
SCEVUnknkown (as a CallbackVH).
forgetMemoizedResults should invalidate the loop back edges expression.
llvm-svn: 177986
its own library. These functions are bridging between the bitcode reader
and the ll parser which are in different libraries. Previously we didn't
have any good library to do this, and instead played fast and loose with
a "header only" set of interfaces in the Support library. This really
doesn't work well as evidenced by the recent attempt to add timing logic
to the these routines.
As part of this, make them normal functions rather than weird inline
functions, and sink the implementation into the library. Also clean up
the header to be nice and minimal.
This requires updating lots of build system dependencies to specify that
the IRReader library is needed, and several source files to not
implicitly rely upon the header file to transitively include all manner
of other headers.
If you are using IRReader.h, this commit will break you (the header
moved) and you'll need to also update your library usage to include
'irreader'. I will commit the corresponding change to Clang momentarily.
llvm-svn: 177971
Move the CortexA9 resources into the CortexA9 SchedModel namespace. Define
resource mappings under the CortexA9 SchedModel. Define resources and mappings
for the SwiftModel.
llvm-svn: 177968
This is very much work in progress. Please send me a note if you start to depend
on the added abstract read/write resources. They are subject to change until
further notice.
The old itinerary is still the default.
llvm-svn: 177967
it's only really useful if you're going to crash anyways. Use it in the pretty stack trace
printer to kill the compiler if we hang while printing the stack trace.
llvm-svn: 177962
This will allow for verification and analysis of the merge function of
the data flow analyses in the ARC optimizer.
The actual implementation of this feature is by introducing calls to
the functions llvm.arc.annotation.{bottomup,topdown}.{bbstart,bbend}
which are only declared. Each such call takes in a pointer to a global
with the same name as the pointer whose provenance is being tracked and
a pointer whose name is one of our Sequence states and points to a
string that contains the same name.
To ensure that the optimizer does not consider these annotations in any
way, I made it so that the annotations are considered to be of IC_None
type.
A test case is included for this commit and the previous
ObjCARCAnnotation commit.
llvm-svn: 177952
Previously the inner works of the data flow analysis in ObjCARCOpts was hard to
get out of the optimizer for analysis of bugs or testing. All of the current ARC
unit tests are based off of testing the effect of the data flow
analysis (i.e. what statements are removed or moved, etc.). This creates
weakness in the current unit testing regimem since we are not actually testing
what effects various instructions have on the modeled pointer state.
Additionally in order to analyze a bug in the optimizer, one would need to track
by hand what the optimizer was actually doing either through use of DEBUG
statements or through the usage of a debugger, both yielding large loses in
developer productivity.
This patch deals with these two issues by providing ARC annotation
metadata that annotates instructions with the state changes that they cause in
various pointers as well as provides metadata to annotate provenance sources.
Specifically, we introduce the following metadata types:
1. llvm.arc.annotation.bottomup.
2. llvm.arc.annotation.topdown.
3. llvm.arc.annotation.provenancesource.
llvm.arc.annotation.{bottomup,topdown}: These annotations describes a state
change in a pointer when we are visiting instructions bottomup/topdown
respectively. The output format for both is the same:
!1 = metadata !{metadata !"(test,%x)", metadata !"S_Release", metadata !"S_Use"}
The first element is a string tuple with the following format:
(function,variable name)
The second two elements of the metadata show the previous state of the
pointer (in this case S_Release) and the new state of the pointer (S_Use). We
write the metadata in such a manner to ensure that it is easy for outside tools
to parse. This is important since I am currently working on a tool for taking
this information and pretty printing it besides the IR and that can be used for
LIT style testing via the generation of an index.
llvm.arc.annotation.provenancesource: This metadata is used to annotate
instructions which act as provenance sources, i.e. ones that introduce a
new (from the optimizer's perspective) non-argument pointer to track. This
enables cross-referencing in between provenance sources and the state changes
that occur to them.
This is still a work in progress. Additionally I plan on committing
later today additions to the annotations that annotate at the top/bottom
of basic blocks the state of the various pointers being tracked.
*NOTE* The metadata support is conditionally compiled into libObjCARCOpts only
when we are producing a debug build of llvm/clang and even so are
disabled by default. To enable the annotation metadata, pass in
-enable-objc-arc-annotations to opt.
llvm-svn: 177951
- It's still considered aligned when the specified alignment is larger
than the natural alignment;
- The new alignment for the high 128-bit vector should be min(16,
alignment) as the pointer is advanced by 16, a power-of-2 offset.
llvm-svn: 177947
- Handle the case where the result of 'insert_subvect' is bitcasted
before 'extract_subvec'. This removes the redundant insertf128/extractf128
pair on unaligned 256-bit vector load/store on vectors of non 64-bit integer.
llvm-svn: 177945
All the instructions tagged with IIC_DEFAULT had nothing in common, and
we already have a NoItineraries class to represent untagged
instructions.
llvm-svn: 177937
For instance, following transformation will be disabled:
x + x + x => 3.0f * x;
The problem of these transformations is that it introduces a FP constant, which
following Instruction-Selection pass cannot handle.
Reviewed by Nadav, thanks a lot!
rdar://13445387
llvm-svn: 177933
test/CodeGen/Generic/2008-02-20-MatchingMem.ll: Test contains inline assembly not supported by Hexagon.
Following tests are XFAILed due to multiple return values which Hexagon doesn't support.
test/CodeGen/Generic/multiple-return-values-cross-block-with-invoke.ll
test/CodeGen/Generic/select-cc.ll
test/CodeGen/Generic/vector.ll
llvm-svn: 177912
The problem is that the code mistakenly took for granted that following constructor
is able to create an APFloat from a *SIGNED* integer:
APFloat::APFloat(const fltSemantics &ourSemantics, integerPart value)
rdar://13486998
llvm-svn: 177906
Hexagon does not support -filetype=obj(direct object generation) flag. Therefore,
the following tests are being XFAILed:
test/DebugInfo/dwarf-public-names.ll
test/DebugInfo/member-pointers.ll
test/DebugInfo/two-cus-from-same-file.ll
llvm-svn: 177901
This commit updates the PowerPC back-end (PPCInstrInfo.td and
PPCInstr64Bit.td) to use types instead of register classes in
instruction patterns, along the lines of Jakob Stoklund Olesen's
changes in r177835 for Sparc.
llvm-svn: 177890
This commit updates the PowerPC back-end (PPCInstrInfo.td and
PPCInstr64Bit.td) to use types instead of register classes in
Pat patterns, along the lines of Jakob Stoklund Olesen's
changes in r177829 for Sparc.
llvm-svn: 177889
sure the base register and would-be writeback register don't conflict for
stores. This was already being done for loads.
Unfortunately, it is rather difficult to create a test case for this issue. It
was exposed in 450.soplex at LTO and requires unlucky register allocation.
<rdar://13394908>
llvm-svn: 177874
to have them appear in the right order. Instead append all warnings explicitly
to the language flags. This was already the case for many warnings. Fixes the
issue of -Wno-maybe-uninitialized not being effective because -Wall was being
placed after it rather than before.
llvm-svn: 177866
This simplification happens at 2 places :
- using the nsw attribute when the shl / mul is used by a sign test
- when the shl / mul is compared for (in)equality to zero
llvm-svn: 177856
This syntax is now preferred:
def : Pat<(subc i32:$b, i32:$c), (SUBCCrr $b, $c)>;
There is no reason to repeat the types in the output pattern.
llvm-svn: 177844
DAG arguments can optionally be named:
(dag node, node:$name)
With this change, the node is also optional:
(dag node, node:$name, $name)
The missing node is treated as an UnsetInit, so the above is equivalent
to:
(dag node, node:$name, ?:$name)
This syntax is useful in output patterns where we currently require the
types of variables to be repeated:
def : Pat<(subc i32:$b, i32:$c), (SUBCCrr i32:$b, i32:$c)>;
This is preferable:
def : Pat<(subc i32:$b, i32:$c), (SUBCCrr $b, $c)>;
llvm-svn: 177843
This makes it possible to define instruction patterns like this:
def LDri : F3_2<3, 0b000000,
(outs IntRegs:$dst), (ins MEMri:$addr),
"ld [$addr], $dst",
[(set i32:$dst, (load ADDRri:$addr))]>;
~~~
llvm-svn: 177834
In order for the new ZERO register to be used with MC, etc. we need to specify
its register number (0).
Thanks to Kai for reporting the problem!
llvm-svn: 177833
In preparation for using the new register scavenger capability for providing
more than one register simultaneously, specifically note functions that have
spilled VRSAVE (currently, this can happen only in functions that use the
setjmp intrinsic). As with CR spilling, such functions will need to provide two
emergency spill slots to the scavenger.
No functionality change intended.
llvm-svn: 177832
I recently added a BCL instruction definition as part of implementing SjLj
support. This can also be used to MCize bcl emission in the asm printer.
No functionality change intended.
llvm-svn: 177830
The SelectionDAG graph has MVT type labels, not register classes, so
this makes it clearer what is happening.
This notation is also robust against adding more types to the IntRegs
register class.
llvm-svn: 177829
Just like register classes, value types can be used in two ways in
patterns:
(sext_inreg i32:$src, i16)
In a named leaf node like i32:$src, the value type simply provides the
type of the node directly. This simplifies type inference a lot compared
to the current practice of specifiying types indirectly with register
classes.
As an unnamed leaf node, like i16 above, the value type represents
itself as an MVT::Other immediate.
llvm-svn: 177828
These spilling functions will eventually make use of the register scavenger,
however, they'll do so by taking advantage of PEI's virtual-register-based
delayed scavenging mechanism. As a result, these function parameters will not
be used, and can be removed.
No functionality change intended.
llvm-svn: 177827
A register class can appear as a leaf TreePatternNode with and without a
name:
(COPY_TO_REGCLASS GPR:$src, F8RC)
In a named leaf node like GPR:$src, the register class provides type
information for the named variable represented by the node. The TypeSet
for such a node is the set of value types that the register class can
represent.
In an unnamed leaf node like F8RC above, the register class represents
itself as a kind of immediate. Such a node has the type MVT::i32,
we'll never create a virtual register representing it.
This change makes it possible to remove the special handling of
COPY_TO_REGCLASS in CodeGenDAGPatterns.cpp.
llvm-svn: 177825
The LR register is unconditionally reserved, and its spilling and restoration
is handled by the prologue/epilogue code. As a result, it is never explicitly
spilled by the register allocator.
No functionality change intended.
llvm-svn: 177823
Performing this check unilaterally prevented us from generating FMAs when the incoming IR contained illegal vector types which would eventually be legalized to underlying types that *did* support FMA.
For example, an @llvm.fmuladd on an OpenCL float16 should become a sequence of float4 FMAs, not float4 fmul+fadd's.
NOTE: Because we still call the target-specific profitability hook, individual targets can reinstate the old behavior, if desired, by simply performing the legality check inside their callback hook. They can also perform more sophisticated legality checks, if, for example, some illegal vector types can be productively implemented as FMAs, but not others.
llvm-svn: 177820
177774 broke the lld-x86_64-darwin11 builder; error:
error: comparison of integers of different signs: 'int' and 'size_type' (aka 'unsigned long')
for (SI = 0; SI < Scavenged.size(); ++SI)
~~ ^ ~~~~~~~~~~~~~~~~
Fix this by making SI also unsigned.
llvm-svn: 177780
The new wording cannot be construed as suggesting the use of
SmallVectorImpl<T> as e.g. a class member (just because the class
happens to be in an interface).
llvm-svn: 177778
This patch lets the register scavenger make use of multiple spill slots in
order to guarantee that it will be able to provide multiple registers
simultaneously.
To support this, the RS's API has changed slightly: setScavengingFrameIndex /
getScavengingFrameIndex have been replaced by addScavengingFrameIndex /
isScavengingFrameIndex / getScavengingFrameIndices.
In forthcoming commits, the PowerPC backend will use this capability in order
to implement the spilling of condition registers, and some special-purpose
registers, without relying on r0 being reserved. In some cases, spilling these
registers requires two GPRs: one for addressing and one to hold the value being
transferred.
llvm-svn: 177774
Add "evaluate-tbaa" to print alias queries of loads/stores. Alias queries
between pointers do not include TBAA tags.
Add testing case for "placement new". TBAA currently says NoAlias.
llvm-svn: 177772
We currently have a duplicated set of call instruction patterns depending
on the ABI to be followed (Darwin vs. Linux). This is a bit odd; while the
different ABIs will result in different instruction sequences, the actual
instructions themselves ought to be independent of the ABI. And in fact it
turns out that the only nontrivial difference between the two sets of
patterns is that in the PPC64 Linux ABI, the instruction used for indirect
calls is marked to take X11 as extra input register (which is indeed used
only with that ABI to hold an incoming environment pointer for nested
functions). However, this does not need to be hard-coded at the .td
pattern level; instead, the C++ code expanding calls can simply add that
use, just like it adds uses for argument registers anyway.
No change in generated code expected.
llvm-svn: 177735
Currently, the sub-operand of a memrr address that corresponds to what
hardware considers the base register is called "offreg", while the
sub-operand that corresponds to the offset is called "ptrreg".
To avoid confusion, this patch simply swaps the named of those two
sub-operands and updates all uses. No functional change is intended.
llvm-svn: 177734
PPCTargetLowering::getPreIndexedAddressParts currently provides
the base part of a memory address in the offset result, and the
offset part in the base result. That swap is then undone again
when an MI instruction is generated (in PPCDAGToDAGISel::Select
for loads, and using .md Pat patterns for stores).
This patch reverts this double swap, to make common code and
back-end be in sync as to which part of the address is base
and which is offset.
To avoid performance regressions in certain cases, target code
now checks whether the choice of base register would be rejected
for pre-inc accesses by common code, and attempts to swap base
and offset again in such cases. (Overall, this means that now
pre-ice accesses are generated *more* frequently than before.)
llvm-svn: 177733
The iaddroff ComplexPattern is supposed to recognize displacement
expressions that have been processed by a SelectAddressRegImm,
which means it needs to accept TargetConstant and TargetGlobalAddress
nodes. Currently, it erroneously also accepts some other nodes,
in particular Constant and PPCISD::Lo.
While this problem is currently latent, it would cause wrong-code
bugs with a follow-on patch I'm about to commit, so this patch
tightens the ComplexPattern. The equivalent change is made in
PPCDAGToDAGISel::Select, where pre-inc load patterns are handled
(as opposed to store patterns, the loads are handled in C++ code
without making use of the .td ComplexPattern).
llvm-svn: 177732
The xaddroff pattern is currently (mistakenly) used to recognize
the *base* register in pre-inc store patterns. This patch replaces
those uses by ptr_rc_nor0 (as is elsewhere done to match the base
register of an address), and removes the now unused ComplexPattern.
llvm-svn: 177731
Fixes wrong lighting in some corner cases with r600g and radeonsi, e.g.
manifested by failure of two piglit/glean tests and intermittent black
patches in many apps.
Tested on SI and RS880.
Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=62012 [radeonsi]
Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=58150 [r600g]
NOTE: This is a candidate for the Mesa stable branch.
Reviewed-by: Christian König <christian.koenig@amd.com>
llvm-svn: 177730
Before: the function name was stored by the compiler as a constant string
and the run-time was printing it.
Now: the PC is stored instead and the run-time prints the full symbolized frame.
This adds a couple of instructions into every function with non-empty stack frame,
but also reduces the binary size because we store less strings (I saw 2% size reduction).
This change bumps the asan ABI version to v3.
llvm part.
Example of report (now):
==31711==ERROR: AddressSanitizer: stack-buffer-overflow on address 0x7fffa77cf1c5 at pc 0x41feb0 bp 0x7fffa77cefb0 sp 0x7fffa77cefa8
READ of size 1 at 0x7fffa77cf1c5 thread T0
#0 0x41feaf in Frame0(int, char*, char*, char*) stack-oob-frames.cc:20
#1 0x41f7ff in Frame1(int, char*, char*) stack-oob-frames.cc:24
#2 0x41f477 in Frame2(int, char*) stack-oob-frames.cc:28
#3 0x41f194 in Frame3(int) stack-oob-frames.cc:32
#4 0x41eee0 in main stack-oob-frames.cc:38
#5 0x7f0c5566f76c (/lib/x86_64-linux-gnu/libc.so.6+0x2176c)
#6 0x41eb1c (/usr/local/google/kcc/llvm_cmake/a.out+0x41eb1c)
Address 0x7fffa77cf1c5 is located in stack of thread T0 at offset 293 in frame
#0 0x41f87f in Frame0(int, char*, char*, char*) stack-oob-frames.cc:12 <<<<<<<<<<<<<< this is new
This frame has 6 object(s):
[32, 36) 'frame.addr'
[96, 104) 'a.addr'
[160, 168) 'b.addr'
[224, 232) 'c.addr'
[288, 292) 's'
[352, 360) 'd'
llvm-svn: 177724