aggregate types in a profoundly wrong way that has to be
worked around in every call site, to getEvaluationKind,
which classifies and distinguishes between all of these
cases.
Also, normalize the API for loading and storing complexes.
I'm working on a larger patch and wanted to pull these
changes out, but it would have be annoying to detangle
them from each other.
llvm-svn: 176656
Title: [PR9027] volatile struct bug: member is not loaded at -O;
This is caused by last flag passed to @llvm.memcpy being false,
not honoring that aggregate has at least one 'volatile' data member
(even though aggregate itself has not been qualified as 'volatile'.
As a result, optimization optimizes away the memcpy altogether.
Patch review by John MaCall (I still need to fix up a test though).
llvm-svn: 173535
uncovered.
This required manually correcting all of the incorrect main-module
headers I could find, and running the new llvm/utils/sort_includes.py
script over the files.
I also manually added quite a few missing headers that were uncovered by
shuffling the order or moving headers up to be main-module-headers.
llvm-svn: 169237
Separate out the notions of 'has a trivial special member' and 'has a
non-trivial special member', and use them appropriately. These are not
opposites of one another (there might be no special member, or in C++11 there
might be a trivial one and a non-trivial one). The CXXRecordDecl predicates
continue to produce incorrect results, but do so in fewer cases now, and
they document the cases where they might be wrong.
No functionality changes are intended here (they will come when the predicates
start producing the right answers...).
llvm-svn: 168119
This fixes a regression from r162254, the optimizer has problems reasoning
about the smaller memcpy as it's often not safe to widen a store but making it
smaller is.
llvm-svn: 164917
the trap BB out of the individual checks and into a common function, to prepare
for making this code call into a runtime library. Rename the existing EmitCheck
to EmitTypeCheck to clarify it and to move it out of the way of the new
EmitCheck.
llvm-svn: 163451
(__builtin_* etc.) so that it isn't possible to take their address.
Specifically, introduce a new type to represent a reference to a builtin
function, and a new cast kind to convert it to a function pointer in the
operand of a call. Fixes PR13195.
llvm-svn: 162962
* when checking that a pointer or reference refers to appropriate storage for a type, also check the alignment and perform a null check
* check that references are bound to appropriate storage
* check that 'this' has appropriate storage in member accesses and member function calls
llvm-svn: 162523
to overwrite objects that might have been allocated into the type's
tail padding. This patch is missing some potential optimizations where
the destination is provably a complete object, but it's necessary for
correctness.
Patch by Jonathan Sauer.
llvm-svn: 162254
if we want to ignore a result, the Dest will be null. Otherwise,
we must copy into it. This means we need to ensure a slot when
loading from a volatile l-value.
With all that in place, fix a bug with chained assignments into
__block variables of aggregate type where we were losing insight into
the actual source of the value during the second assignment.
llvm-svn: 159630
In addition, I've made the pointer and reference typedef 'void' rather than T*
just so they can't get misused. I would've omitted them entirely but
std::distance likes them to be there even if it doesn't use them.
This rolls back r155808 and r155869.
Review by Doug Gregor incorporating feedback from Chandler Carruth.
llvm-svn: 158104
filter_decl_iterator had a weird mismatch where both op* and op-> returned T*
making it difficult to generalize this filtering behavior into a reusable
library of any kind.
This change errs on the side of value, making op-> return T* and op* return
T&.
(reviewed by Richard Smith)
llvm-svn: 155808
initialize an array of unsigned char. Outside C++11 mode, this bug was benign,
and just resulted in us emitting a constant which was double the required
length, padded with 0s. In C++11, it resulted in us generating an array whose
first element was something like i8 ptrtoint ([n x i8]* @str to i8).
llvm-svn: 154756
track whether the referenced declaration comes from an enclosing
local context. I'm amenable to suggestions about the exact meaning
of this bit.
llvm-svn: 152491
we correctly emit loads of BlockDeclRefExprs even when they
don't qualify as ODR-uses. I think I'm adequately convinced
that BlockDeclRefExpr can die.
llvm-svn: 152479
block pointer that returns a block literal which captures (by copy)
the lambda closure itself. Some aspects of the block literal are left
unspecified, namely the capture variable (which doesn't actually
exist) and the body (which will be filled in by IRgen because it can't
be written as an AST).
Because we're switching to this model, this patch also eliminates
tracking the copy-initialization expression for the block capture of
the conversion function, since that information is now embedded in the
synthesized block literal. -1 side tables FTW.
llvm-svn: 151131
We now generate temporary arrays to back std::initializer_list objects
initialized with braces. The initializer_list is then made to point at
the array. We support both ptr+size and start+end forms, although
the latter is untested.
Array lifetime is correct for temporary std::initializer_lists (e.g.
call arguments) and local variables. It is untested for new expressions
and member initializers.
Things left to do:
Massively increase the amount of testing. I need to write tests for
start+end init lists, temporary objects created as a side effect of
initializing init list objects, new expressions, member initialization,
creation of temporary objects (e.g. std::vector) for initializer lists,
and probably more.
Get lifetime "right" for member initializers and new expressions. Not
that either are very useful.
Implement list-initialization of array new expressions.
llvm-svn: 150803
is general goodness because representations of member pointers are
not always equivalent across member pointer types on all ABIs
(even though this isn't really standard-endorsed).
Take advantage of the new information to teach IR-generation how
to do these reinterprets in constant initializers. Make sure this
works when intermingled with hierarchy conversions (although
this is not part of our motivating use case). Doing this in the
constant-evaluator would probably have been better, but that would
require a *lot* of extra structure in the representation of
constant member pointers: you'd really have to track an arbitrary
chain of hierarchy conversions and reinterpretations in order to
get this right. Ultimately, this seems less complex. I also
wasn't quite sure how to extend the constant evaluator to handle
foldings that we don't actually want to treat as extended
constant expressions.
llvm-svn: 150551
- Add atomic-to/from-nonatomic cast types
- Emit atomic operations for arithmetic on atomic types
- Emit non-atomic stores for initialisation of atomic types, but atomic stores and loads for every other store / load
- Add a __atomic_init() intrinsic which does a non-atomic store to an _Atomic() type. This is needed for the corresponding C11 stdatomic.h function.
- Enables the relevant __has_feature() checks. The feature isn't 100% complete yet, but it's done enough that we want people testing it.
Still to do:
- Make the arithmetic operations on atomic types (e.g. Atomic(int) foo = 1; foo++;) use the correct LLVM intrinsic if one exists, not a loop with a cmpxchg.
- Add a signal fence builtin
- Properly set the fenv state in atomic operations on floating point values
- Correctly handle things like _Atomic(_Complex double) which are too large for an atomic cmpxchg on some platforms (this requires working out what 'correctly' means in this context)
- Fix the many remaining corner cases
llvm-svn: 148242
The test includes a FIXME for a related case involving calls; it's a bit more complicated to fix because the RValue class doesn't keep track of alignment.
<rdar://problem/10463337>
llvm-svn: 145862
generic pushDestroy function.
This would reduce the number of useful declarations in
CGTemporaries.cpp to one. Since CodeGenFunction::EmitCXXTemporary
does not deserve its own file, move it to CGCleanup.cpp and delete
CGTemporaries.cpp.
llvm-svn: 145202
need to provide a 'dominating IP' which is guaranteed to
dominate the (de)activation point but which cannot be avoided
along any execution path from the (de)activation point to
the push-point of the cleanup. Using the entry block is
bad mojo.
llvm-svn: 144276
full-expression. Naturally they're inactive before we enter
the block literal expression. This restores the intended
behavior that blocks belong to their enclosing scope.
There's a useful -O0 / compile-time optimization that we're
missing here with activating cleanups following straight-line
code from their inactive beginnings.
llvm-svn: 144268
property references to use a new PseudoObjectExpr
expression which pairs a syntactic form of the expression
with a set of semantic expressions implementing it.
This should significantly reduce the complexity required
elsewhere in the compiler to deal with these kinds of
expressions (e.g. IR generation's special l-value kind,
the static analyzer's Message abstraction), at the lower
cost of specifically dealing with the odd AST structure
of these expressions. It should also greatly simplify
efforts to implement similar language features in the
future, most notably Managed C++'s properties and indexed
properties.
Most of the effort here is in dealing with the various
clients of the AST. I've gone ahead and simplified the
ObjC rewriter's use of properties; other clients, like
IR-gen and the static analyzer, have all the old
complexity *and* all the new complexity, at least
temporarily. Many thanks to Ted for writing and advising
on the necessary changes to the static analyzer.
I've xfailed a small diagnostics regression in the static
analyzer at Ted's request.
llvm-svn: 143867
expressions: expressions which refer to a logical rather
than a physical l-value, where the logical object is
actually accessed via custom getter/setter code.
A subsequent patch will generalize the AST for these
so that arbitrary "implementing" sub-expressions can
be provided.
Right now the only client is ObjC properties, but
this should be generalizable to similar language
features, e.g. Managed C++'s __property methods.
llvm-svn: 142914
language options. Use that .def file to declare the LangOptions class
and initialize all of its members, eliminating a source of annoying
initialization bugs.
AST serialization changes are next up.
llvm-svn: 139605
the lifetime of the block by copying it to the heap, or else we'll get
a dangling reference because the code working with the non-block-typed
object will not know it needs to copy.
There is some danger here, e.g. with assigning a block literal to an
unsafe variable, but, well, it's an unsafe variable.
llvm-svn: 139451
than conversions of C pointers to ObjC pointers. In order to ensure that
we've caught every case, add asserts to CastExpr that strictly determine
which cast kind is used for which kind of bit cast.
llvm-svn: 139352
synthesized move assignment within an implicitly-defined move
assignment operator, be sure to treat the derived-to-base cast as an
xvalue (rather than an lvalue). Otherwise, we'll end up getting the
wrong constructor.
Optimize a direct call to a trivial move assignment operator to an
aggregate copy, as we do for trivial copy assignment operators, and
update the the assertion in CodeGenFunction::EmitAggregateCopy() to
cope with this optimization.
Fixes PR10860.
llvm-svn: 139143
builtin types (When requested). This is another step toward making
ASTUnit build the ASTContext as needed when loading an AST file,
rather than doing so after the fact. No actual functionality change (yet).
llvm-svn: 138985
really shouldn't be optional. Fix the remaining place where a
temporary was being passed as potentially-aliased memory.
Fixes PR10756.
llvm-svn: 138627
emit call results into potentially aliased slots. This allows us
to properly mark indirect return slots as noalias, at the cost
of requiring an extra memcpy when assigning an aggregate call
result into a l-value. It also brings us into compliance with
the x86-64 ABI.
llvm-svn: 138599
to represent a fully-substituted non-type template parameter.
This should improve source fidelity, as well as being generically
useful for diagnostics and such.
llvm-svn: 135243
- an off-by-one error in emission of irregular array limits for
InitListExprs
- use an EH partial-destruction cleanup within the normal
array-destruction cleanup
- get the branch destinations right for the empty check
Also some refactoring which unfortunately obscures these changes.
llvm-svn: 134890
- Emit default-initialization of arrays that were partially initialized
with initializer lists with a loop, rather than emitting the default
initializer N times;
- support destroying VLAs of non-trivial type, although this is not
yet exposed to users; and
- support the partial destruction of arrays initialized with
initializer lists when an initializer throws an exception.
llvm-svn: 134784
where we have an immediate need of a retained value.
As an exception, don't do this when the call is made as the immediate
operand of a __bridge retain. This is more in the way of a workaround
than an actual guarantee, so it's acceptable to be brittle here.
rdar://problem/9504800
llvm-svn: 134605
MaterializeTemporaryExpr captures a reference binding to a temporary
value, making explicit that the temporary value (a prvalue) needs to
be materialized into memory so that its address can be used. The
intended AST invariant here is that a reference will always bind to a
glvalue, and MaterializeTemporaryExpr will be used to convert prvalues
into glvalues for that binding to happen. For example, given
const int& r = 1.0;
The initializer of "r" will be a MaterializeTemporaryExpr whose
subexpression is an implicit conversion from the double literal "1.0"
to an integer value.
IR generation benefits most from this new node, since it was
previously guessing (badly) when to materialize temporaries for the
purposes of reference binding. There are likely more refactoring and
cleanups we could perform there, but the introduction of
MaterializeTemporaryExpr fixes PR9565, a case where IR generation
would effectively bind a const reference directly to a bitfield in a
struct. Addresses <rdar://problem/9552231>.
llvm-svn: 133521
separate aggregate temporary and then memcpy it over to the
destination. This fixes a regression I introduced with r133235, where
the compound literal on the RHS of an assignment makes use of the
structure on the LHS of the assignment.
I'm deeply suspicious of AggExprEmitter::VisitBinAssign()'s
optimization where it emits the RHS of an aggregate assignment
directly into the LHS lvalue without checking whether there is any
aliasing between the LHS/RHS. However, I'm not in a position to
revisit this now.
Big thanks to Eli for finding the regression!
llvm-svn: 133261
C++, which means:
- binding the temporary as needed in Sema, so that we generate the
appropriate call to the destructor, and
- emitting the compound literal into the appropriate location for
the aggregate, rather than trying to emit it as a temporary and
memcpy() it.
Fixes PR10138 / <rdar://problem/9615901>.
llvm-svn: 133235
Language-design credit goes to a lot of people, but I particularly want
to single out Blaine Garst and Patrick Beard for their contributions.
Compiler implementation credit goes to Argyrios, Doug, Fariborz, and myself,
in no particular order.
llvm-svn: 133103
-C++ objects with user-declared constructor don't need zero'ing.
-We can zero-initialize arrays of C++ objects in "bulk" now, in which case don't zero-initialize each object again.
llvm-svn: 130453
double data[20000000] = {0};
we would blow out the memory by creating 20M Exprs to fill out the initializer.
To fix this, if the initializer list initializes an array with more elements than
there are initializers in the list, have InitListExpr store a single 'ArrayFiller' expression
that specifies an expression to be used for value initialization of the rest of the elements.
Fixes rdar://9275920.
llvm-svn: 129896
because the result is ignored. The particular example here is with
property l-values, but there could be all sorts of lovely casts that this
isn't safe for. Sink the check into the one case that seems to actually
be capable of honoring this.
llvm-svn: 129397
for __unknown_anytype resolution to destructively modify the AST. So that's
what it does now, which significantly simplifies some of the implementation.
Normal member calls work pretty cleanly now, and I added support for
propagating unknown-ness through &.
llvm-svn: 129331
represents a dynamic cast where we know that the result is always null.
For example:
struct A {
virtual ~A();
};
struct B final : A { };
struct C { };
bool f(B* b) {
return dynamic_cast<C*>(b);
}
llvm-svn: 129256
The idea is that you can create a VarDecl with an unknown type, or a
FunctionDecl with an unknown return type, and it will still be valid to
access that object as long as you explicitly cast it at every use. I'm
still going back and forth about how I want to test this effectively, but
I wanted to go ahead and provide a skeletal implementation for the LLDB
folks' benefit and because it also improves some diagnostic goodness for
placeholder expressions.
llvm-svn: 129065
class and to bind the shared value using OpaqueValueExpr. This fixes an
unnoticed problem with deserialization of these expressions where the
deserialized form would lose the vital pointer-equality trait; or rather,
it fixes it because this patch also does the right thing for deserializing
OVEs.
Change OVEs to not be a "temporary object" in the sense that copy elision is
permitted.
This new representation is not totally unawkward to work with, but I think
that's really part and parcel with the semantics we're modelling here. In
particular, it's much easier to fix things like the copy elision bug and to
make the CFG look right.
I've tried to update the analyzer to deal with this in at least some
obvious cases, and I think we get a much better CFG out, but the printing
of OpaqueValueExprs probably needs some work.
llvm-svn: 125744
I'm separately committing this because it incidentally changes some
block orderings and minor IR issues, like using a phi instead of
an unnecessary alloca.
llvm-svn: 124277
the LHS, or else the pointer might be invalid. This is kindof dumb, but
go ahead and make sure we're doing that for l-value scalar assignment,
which fixes a miscompile of obj-c++.dg/block-seq.mm.
Leave a FIXME for how to solve this problem for agg __blocks.
llvm-svn: 120992
Fix a bug in the emission of complex compound assignment l-values.
Introduce a method to emit an expression whose value isn't relevant.
Make that method evaluate its operand as an l-value if it is one.
Fixes our volatile compliance in C++.
llvm-svn: 120931
not actually frequently used, because ImpCastExprToType only creates a node
if the types differ. So explicitly create an ICE in the lvalue-to-rvalue
conversion code in DefaultFunctionArrayLvalueConversion() as well as several
other new places, and consistently deal with the consequences throughout the
compiler.
In addition, introduce a new cast kind for loading an ObjCProperty l-value,
and make sure we emit those nodes whenever an ObjCProperty l-value appears
that's not on the LHS of an assignment operator.
This breaks a couple of rewriter tests, which I've x-failed until future
development occurs on the rewriter.
Ted Kremenek kindly contributed the analyzer workarounds in this patch.
llvm-svn: 120890
when an initializer is variable (I handled the constant case in a previous
patch). This has three pieces:
1. Enhance AggValueSlot to have a 'isZeroed' bit to tell CGExprAgg that
the memory being stored into has previously been memset to zero.
2. Teach CGExprAgg to not emit stores of zero to isZeroed memory.
3. Teach CodeGenFunction::EmitAggExpr to scan initializers to determine
whether they are profitable to emit a memset + inividual stores vs
stores for everything.
The heuristic used is that a global has to be more than 16 bytes and
has to be 3/4 zero to be candidate for this xform. The two testcases
are illustrative of the scenarios this catches. We now codegen test9 into:
call void @llvm.memset.p0i8.i64(i8* %0, i8 0, i64 400, i32 4, i1 false)
%.array = getelementptr inbounds [100 x i32]* %Arr, i32 0, i32 0
%tmp = load i32* %X.addr, align 4
store i32 %tmp, i32* %.array
and test10 into:
call void @llvm.memset.p0i8.i64(i8* %0, i8 0, i64 392, i32 8, i1 false)
%tmp = getelementptr inbounds %struct.b* %S, i32 0, i32 0
%tmp1 = getelementptr inbounds %struct.a* %tmp, i32 0, i32 0
%tmp2 = load i32* %X.addr, align 4
store i32 %tmp2, i32* %tmp1, align 4
%tmp5 = getelementptr inbounds %struct.b* %S, i32 0, i32 3
%tmp10 = getelementptr inbounds %struct.a* %tmp5, i32 0, i32 4
%tmp11 = load i32* %X.addr, align 4
store i32 %tmp11, i32* %tmp10, align 4
Previously we produced 99 stores of zero for test9 and also tons for test10.
This xforms should substantially speed up -O0 builds when it kicks in as well
as reducing code size and optimizer heartburn on insane cases. This resolves
PR279.
llvm-svn: 120692
slot. The easiest way to do that was to bundle up the information
we care about for aggregate slots into a new structure which demands
that its creators at least consider the question.
I could probably be convinced that the ObjC 'needs GC' bit should
be rolled into this structure.
Implement generalized copy elision. The main obstacle here is that
IR-generation must be much more careful about making sure that exactly
llvm-svn: 113962
but not in C++, so don't emit aggregate loads of volatile references
in null context in C++. Happens to have been caught by an assertion.
We do not get the scalar case right. Volatiles are really broken.
llvm-svn: 112019
implicitly-defined default constructor, zero-initialize the memory
before calling the default constructor. Previously, we would only
zero-initialize in the case of a trivial default constructor.
Also, simplify the hideous logic that determines when we have a
trivial default constructor and, therefore, don't need to emit any
call at all.
llvm-svn: 111779
pointers. I find the resulting code to be substantially cleaner, and it
makes it very easy to use the same APIs for data member pointers (which I have
conscientiously avoided here), and it avoids a plethora of potential
inefficiencies due to excessive memory copying, but we'll have to see if it
actually works.
llvm-svn: 111776
duplication between the constant and non-constant paths in all of this.
Implement ARM ABI semantics for member pointer constants and conversion.
llvm-svn: 111772
This takes some trickery since CastExpr has subclasses (and indeed,
is abstract).
Also, smoosh the CastKind into the bitfield from Expr.
Drops two words of storage from Expr in the common case of expressions
which don't need inheritance paths. Avoids a separate allocation and
another word of overhead in cases needing inheritance paths. Also has
the advantage of not leaking memory, since destructors for AST nodes are
never run.
llvm-svn: 110507
reinterpret_casts (possibly indirectly via C-style/functional casts)
on values, e.g.,
int i;
reinterpret_cast<short&>(i);
The IR generated for this is essentially the same as for
*reinterpret_cast<short*>(&i).
Fixes PR6437, PR7593, and PR7344.
llvm-svn: 108294