The previous code that was supposed to handle this didn't work
since parsing of inline method definitions is delayed to the end
of the outer class definition. Thus, when HandleTagDeclDefinition()
got called for the inner class, the inline functions in that class
had not been parsed yet.
Richard suggested that the way to do this is by handling inline
method definitions through a new ASTConsumer callback.
I really wanted to call ASTContext::DeclMustBeEmitted() instead of
checking for attributes, but doing that causes us to compute linkage,
and then we fail with "error: unsupported: typedef changes linkage
of anonymous type, but linkage was already computed" on tests like
this: (from SemaCXX/undefined-internal.cpp) :-/
namespace test7 {
typedef struct {
void bar();
void foo() { bar(); }
} A;
}
Differential Revision: http://reviews.llvm.org/D3809
llvm-svn: 209549
A return type is the declared or deduced part of the function type specified in
the declaration.
A result type is the (potentially adjusted) type of the value of an expression
that calls the function.
Rule of thumb:
* Declarations have return types and parameters.
* Expressions have result types and arguments.
llvm-svn: 200082
Lift the getFunctionDecl() utility out of the parser into a general
Decl::getAsFunction() and use it to simplify other parts of the implementation.
Reduce isFunctionOrFunctionTemplate() to a simple type check that works the
same was as the other is* functions and move unwrapping of shadowed decls to
callers so it doesn't get run twice.
Shuffle around canSkipFunctionBody() to reduce virtual dispatch on ASTConsumer.
There's no need to query when we already know the body can't be skipped.
llvm-svn: 199794
handling C++11 default initializers. Without this, other parts of Sema (such as
lambda capture) would think the default initializer is part of the surrounding
function scope.
llvm-svn: 199453
1) Teach ExpectAndConsume() to emit expected and expected-after diagnostics
using the generic diagnostic descriptions added in r197972, eliminating another
set of trivial err_expected_* variations while maintaining existing behaviour.
2) Lift SkipUntil() recovery out of ExpectAndConsume(). The Expect/Consume
family of functions are primitive parser operations that now have the
well-defined property of operating on single tokens. Factoring out recovery
exposes opportunities for more consistent and tailored error recover at the
call sites instead of just relying on a bottled SkipUntil formula.
llvm-svn: 198270
Introduce proper facilities to render token spellings using the diagnostic
formatter.
Replaces most of the hard-coded diagnostic messages related to expected tokens,
which all shared the same semantics but had to be multiply defined due to
variations in token order or quote marks.
The associated parser changes are largely mechanical but they expose
commonality in whole chunks of the parser that can now be factored away.
This commit uses C++11 typed enums along with a speculative legacy fallback
until the transition is complete.
Requires corresponding changes in LLVM r197895.
llvm-svn: 197972
1) Introduce TryConsumeToken() to handle the common test-and-consume pattern.
This brings about readability improvements in the parser and optimizes to avoid
redundant checks in the common case.
2) Eliminate the ConsumeCodeCompletionTok special case from ConsumeToken(). This
was used by only one caller which has been switched over to the more
appropriate ConsumeCodeCompletionToken() function.
llvm-svn: 197497
module. Use the marker to diagnose cases where we try to transition between
submodules when not at the top level (most likely because a closing brace was
missing at the end of a header file, but is also possible if submodule headers
attempt to do something fundamentally non-modular, like our .def files).
llvm-svn: 195543
Commit r191484 treated constexpr function templates as normal function
templates with respect to delaying their parsing. However, this is
unnecessarily restrictive because there is no compatibility concern with
constexpr, MSVC doesn't support it.
Instead, simply disable delayed template parsing for constexpr function
templates. This largely reverts the changes made in r191484 but keeps
it's unit test.
This fixes PR17661.
llvm-svn: 193274
r177003 applied the late parsed template technique to friend functions
but omitted the corresponding check for redefinitions.
This patch adds the same check already in use for templates to the
new code path in order to diagnose and reject invalid redefinitions
that were being silently accepted.
Fixes PR17324.
Reviewed by Richard Smith.
llvm-svn: 192948
Summary:
We should treat a non-dependent template specialization like it wasn't
templated at all.
Reviewers: rsmith
CC: cfe-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D1554
llvm-svn: 190743
When a comma occurs in a default argument or default initializer within a
class, disambiguate whether it is part of the initializer or whether it ends
the initializer.
The way this works (which I will be proposing for standardization) is to treat
the comma as ending the default argument or default initializer if the
following token sequence matches the syntactic constraints of a
parameter-declaration-clause or init-declarator-list (respectively).
This is both consistent with the disambiguation rules elsewhere (where entities
are treated as declarations if they can be), and should have no regressions
over our old behavior. I think it might also disambiguate all cases correctly,
but I don't have a proof of that.
There is an annoyance here: because we're performing a tentative parse in a
situation where we may not have seen declarations of all relevant entities (if
the comma is part of the initializer, lookup may find entites declared later in
the class), we need to turn off typo-correction and diagnostics during the
tentative parse, and in the rare case that we decide the comma is part of the
initializer, we need to revert all token annotations we performed while
disambiguating.
Any diagnostics that occur outside of the immediate context of the tentative
parse (for instance, if we trigger the implicit instantiation of a class
template) are *not* suppressed, mirroring the usual rules for a SFINAE context.
llvm-svn: 190639
previously didn't work if a mem-initializer-id had a template argument which
contained parentheses or braces.
We now implement a simple rule: just look for a ') {' or '} {' that is not
nested. The '{' is assumed to start the function-body. There are still two
cases which we misparse, where the ') {' comes from a compound literal or
from a lambda. The former case is not valid C++, and the latter will probably
not be valid C++ once DR1607 is resolved, so these seem to be of low value,
and we do not regress on them with this change. EDG and g++ also misparse
both of these cases.
llvm-svn: 185598
When we are consuming the current token just to enter a new token stream, we push
the current token in the back of the stream so that we get it again.
Unfortunately this had the effect where if the current token is a code-completion one,
we would code-complete once during consuming it and another time after the stream ended.
Fix this by making sure that, in this case, ConsumeAnyToken() will consume a code-completion
token without invoking code-completion.
rdar://12842503
llvm-svn: 178199
template instantiation will still consider them to be definitions
if we instantiate the containing class before we get around
to parsing the friend.
This seems like a legitimate use of "late template parsed" to me,
but I'd appreciate it if someone responsible for the MS feature
would look over this.
This file already appears to access AST nodes directly, which
is arguably not kosher in the parser, but the performance of this
path matters enough that perpetuating the sin is justifiable.
Probably we ought to reconsider this policy for very simple
manipulations like this.
The reason this entire thing is necessary is that
function template instantiation plays some very gross games
in order to not associate an instantiated function template
with the class it came from unless it's a definition, and
the reason *that's* necessary is that the AST currently
cannot represent the instantiation history of individual
function template declarations, but instead tracks it in
common for the entire function template. That probably
prevents us from correctly reporting ill-formed calls to
ambiguously instantiated friend function templates.
rdar://12350696
llvm-svn: 177003
This required plumbing through a new flag to determine whether a ParmVarDecl is
actually a parameter of a function declaration (as opposed to a function
typedef etc, where the attribute is prohibited). Weirdly, this attribute (just
like [[noreturn]]) cannot be applied to a function type, just to a function
declaration (and its parameters).
llvm-svn: 173726
uncovered.
This required manually correcting all of the incorrect main-module
headers I could find, and running the new llvm/utils/sort_includes.py
script over the files.
I also manually added quite a few missing headers that were uncovered by
shuffling the order or moving headers up to be main-module-headers.
llvm-svn: 169237
refactorings in that revision, and some of the subsequent bugfixes, which
seem to be relevant even without delayed exception specification parsing.
llvm-svn: 156031
exception specifications on member functions until after the closing
'}' for the containing class. This allows, for example, a member
function to throw an instance of its own class. Fixes PR12564 and a
fairly embarassing oversight in our C++98/03 support.
llvm-svn: 154844
in the declaration of a non-static member function after the
(optional) cv-qualifier-seq, which in practice means in the exception
specification and late-specified return type.
The new scheme here used to manage 'this' outside of a member function
scope is more general than the Scope-based mechanism previously used
for non-static data member initializers and late-parsesd attributes,
because it can also handle the cv-qualifiers on the member
function. Note, however, that a separate pass is required for static
member functions to determine whether 'this' was used, because we
might not know that we have a static function until after declaration
matching.
Finally, this introduces name mangling for 'this' and for the implicit
'this', which is intended to match GCC's mangling. Independent
verification for the new mangling test case would be appreciated.
Fixes PR10036 and PR12450.
llvm-svn: 154799
paren/brace/bracket tracking (the Consume* functions already did it),
removing the use of ConsumeAnyToken(), and moving the hot paths inline
with the error paths out-of-line.
llvm-svn: 152274
default arguments of function parameters. This simple-sounding task is
complicated greatly by two issues:
(1) Default arguments aren't actually a real context, so we need to
maintain extra state within lambda expressions to track when a
lambda was actually in a default argument.
(2) At the time that we parse a default argument, the FunctionDecl
doesn't exist yet, so lambda closure types end up in the enclosing
context. It's not clear that we ever want to change that, so instead
we introduce the notion of the "effective" context of a declaration
for the purposes of name mangling.
llvm-svn: 151011