<rdar://problem/13723772>
Modified the lldb_private::Thread to work much better with the OperatingSystem plug-ins. Operating system plug-ins can now return have a "core" key/value pair in each thread dictionary for the OperatingSystemPython plug-ins which allows the core threads to be contained with memory threads. It also allows these memory threads to be stepped, resumed, and controlled just as if they were the actual backing threads themselves.
A few things are introduced:
- lldb_private::Thread now has a GetProtocolID() method which returns the thread protocol ID for a given thread. The protocol ID (Thread::GetProtocolID()) is usually the same as the thread id (Thread::GetID()), but it can differ when a memory thread has its own id, but is backed by an actual API thread.
- Cleaned up the Thread::WillResume() code to do the mandatory parts in Thread::ShouldResume(), and let the thread subclasses override the Thread::WillResume() which is now just a notification.
- Cleaned up ClearStackFrames() implementations so that fewer thread subclasses needed to override them
- Changed the POSIXThread class a bit since it overrode Thread::WillResume(). It is doing the wrong thing by calling "Thread::SetResumeState()" on its own, this shouldn't be done by thread subclasses, but the current code might rely on it so I left it in with a TODO comment with an explanation.
llvm-svn: 180886
Enabling LLDB to write to variables that are stored in registers
Previously, this would not work since the Value's Context loses the notion of the data being in a register
We now store an "original" context that comes out of DWARF parsing, and use that context's data when attempting a write
llvm-svn: 180803
std::string
Module::GetSpecificationDescription () const;
This returns the module as "/usr/lib/libfoo.dylib" for normal files (calls "std::string FileSpec::GetPath()" on m_file) but it also might include the object name in case the module is for a .o file in a BSD archive ("/usr/lib/libfoo.a(bar.o)"). Cleaned up necessary logging code to use it.
llvm-svn: 180717
with directories, without increasing the size of the FileSpec object.
GetPath() returns a std::string of the full pathname of the file.
IsDirectory(), IsPipe(), IsRegularFile(), IsSocket(), and IsSymbolicLink()
can be used instead of getting the FileType() and comparing it to an enum.
Update PlatformDarwinKernel to use these new methods.
llvm-svn: 180704
mostly related to management of the stack frame
for the interpreter.
- First, if the expression can be interpreted,
allocate the stack frame in the target process
(to make sure pointers are valid) but only
read/write to the copy in the host's memory.
- Second, keep the memory allocations for the
stack frame and the materialized struct as
member variables of ClangUserExpression. This
avoids memory allocations and deallocations
each time the expression runs.
<rdar://problem/13043685>
llvm-svn: 180664
There is a new static ObjectFile function you can call:
size_t
ObjectFile::GetModuleSpecifications (const FileSpec &file,
lldb::offset_t file_offset,
ModuleSpecList &specs)
This will fill in "specs" which the details of all the module specs (file + arch + UUID (if there is one) + object name (for BSD archive objects eventually) + file offset to the object in question).
This helps us when a user specifies a file that contains a single architecture, and also helps us when we are given a debug symbol file (like a dSYM file on MacOSX) that contains one or more architectures and we need to be able to match it up to an existing Module that has no debug info.
llvm-svn: 180224
not find multiple functions with the same name but
different types. Now we keep track of what types
we've already reported for a function and only elide
functions if we've already reported a conflicting
one.
Also added a test case.
<rdar://problem/11367837>
llvm-svn: 180167
Fixed the GDB remote with the python OS plug-in to not show core threads when they aren't desired and also to have the threads "to the right thing" when continuing.
llvm-svn: 179912
This prevents unbounded reads (i.e. reads of GetMaximumSizeOfStringSummary() bytes)
from causing test failures (i.e. due to ptrace EIO or EFAULT on Linux).
Note that ReadCStringFromMemory is marked as deprecated because the loop that calls
ReadMemory does not continue until the string has been completely read.
The expected behavior is to read until until max_bytes or a null terminator.
Note: As discussed on lldb-dev, further testing will be performed with ReadStringFromMemory
before further changes are made for users of ReadCStringFromMemory.
Thanks to Enrico, Matt and Andy for their review feedback.
llvm-svn: 179857
Previously, the options for a breakopint or its
locations stored only the text of the breakpoint
condition (ironically, they used ClangUserExpression
as a glorified std::string) and, each time the condition
had to be evaluated in the StopInfo code, the expression
parser would be invoked via a static method to parse and
then execute the expression.
I made several changes here:
- Each breakpoint location now has its own
ClangUserExpressionSP containing a version of
the breakpoint expression compiled for that exact
location.
- Whenever the breakpoint is hit, the breakpoint
condition expression is simply re-run to determine
whether to stop.
- If the process changes (e.g., it's re-run) or
the source code of the expression changes (we use
a hash so as to avoid doing string comparisons)
the ClangUserExpressionSP is re-generated.
This should improve performance of breakpoint
conditions significantly, and takes advantage of
the recent expression re-use work.
llvm-svn: 179838
and made attempts to allocate memory in the process
fall back to FindSpace and just allocate memory on
the host (but with real-looking pointers, hence
FindSpace) if the process doesn't allow allocation.
This allows expressions to run on processes that don't
support allocation, like core files.
This introduces an extremely rare potential problem:
If all of the following are true:
- The Process doesn't support allocation;
- the user writes an expression that refers to an
address that does not yet map to anything, or is
dynamically generated (e.g., the result of calling
a function); and
- the randomly-selected address for the static data
for that specific expression runs into the
address the user was expecting to work with;
then dereferencing the pointer later results
in the user seeing something unexpected. This is
unlikely but possible; as a future piece of work,
we should have processes be able to hint to the
expression parser where it can allocate temporary data
of this kind.
llvm-svn: 179827
expressions.
Previously, ClangUserExpression assumed that if
there was a constant result for an expression
then it could be determined during parsing. In
particular, the IRInterpreter ran while parser
state (in particular, ClangExpressionDeclMap)
was present. This approach is flawed, because
the IRInterpreter actually is capable of using
external variables, and hence the result might
be different each run. Until now, we papered
over this flaw by re-parsing the expression each
time we ran it.
I have rewritten the IRInterpreter to be
completely independent of the ClangExpressionDeclMap.
Instead of special-casing external variable lookup,
which ties the IRInterpreter closely to LLDB,
we now interpret the exact same IR that the JIT
would see. This IR assumes that materialization
has occurred; hence the recent implementation of the
Materializer, which does not require parser state
(in the form of ClangExpressionDeclMap) to be
present.
Materialization, interpretation, and dematerialization
are now all independent of parsing. This means that
in theory we can parse expressions once and run them
many times. I have three outstanding tasks before
shutting this down:
- First, I will ensure that all of this works with
core files. Core files have a Process but do not
allow allocating memory, which currently confuses
materialization.
- Second, I will make expression breakpoint
conditions remember their ClangUserExpression and
re-use it.
- Third, I will tear out all the redundant code
(for example, materialization logic in
ClangExpressionDeclMap) that is no longer used.
While implementing this fix, I also found a bug in
IRForTarget's handling of floating-point constants.
This should be fixed.
llvm-svn: 179801
will be gone soon!) that lets it interpret a function
using just an llvm::Module, an llvm::Function, and a
MemoryMap.
Also added an API to IRExecutionUnit to get at its
llvm::Function, so that the IRInterpreter can work
with it.
llvm-svn: 179704
a ClangExpressionDeclMap. Any functions that
require value resolution etc. fail if the
ClangExpressionDeclMap isn't present - which is
exactly what is desired.
llvm-svn: 179695
IRMemoryMap rather than through its own memory
abstraction. This considerably simplifies the
code, and makes it possible to run the
IRInterpreter multiple times on an already-parsed
expression in the absence of a ClangExpressionDeclMap.
Changes include:
- ClangExpressionDeclMap's interface methods
for the IRInterpreter now take IRMemoryMap
arguments. They are not long for this world,
however, since the IRInterpreter will soon be
working with materialized variables.
- As mentioned above, removed the Memory class
from the IR interpreter altogether. It had a
few functions that remain useful, such as
keeping track of Values that have been placed
in memory, so I moved those into methods on
InterpreterStackFrame.
- Changed IRInterpreter to work with lldb::addr_t
rather than Memory::Region as its primary
currency.
- Fixed a bug in the IRMemoryMap where it did not
report correct address byte size and byte order
if no process was present, because it was using
Target::GetDefaultArchitecture() rather than
Target::GetArchitecture().
- Made IRMemoryMap methods clear the Errors they
receive before running. Having to do this by
hand is just annoying.
The testsuite seems happy with these changes, but
please let me know if you see problems (especially
in use cases without a process).
llvm-svn: 179675
Materializer for all expressions that need to
run in the target. This includes the following
changes:
- Removed a bunch of (de-)materialization code
from ClangExpressionDeclMap and assumed the
presence of a Materializer where we previously
had a fallback.
- Ensured that an IRMemoryMap is passed into
ClangExpressionDeclMap::Materialize().
- Fixed object ownership on LLVMContext; it is
now owned by the IRExecutionUnit, since the
Module and the ExecutionEngine both depend on
its existence.
- Fixed a few bugs in IRMemoryMap and the
Materializer that showed up during testing.
llvm-svn: 179649
- Do not add symbols with no names
- Make sure that symbols from ELF symbol tables know that the byte size is correct. Previously the symbols would calculate their sizes by looking for the next symbol and take symbols that had zero size and make them have invalid sizes.
- Added the ability to dump raw ELF symbols by adding a Dump method to ELFSymbol
Also removed some unused code from lldb_private::Symtab.
llvm-svn: 179466
lets a ValueObject's contents be set from raw
data. This has certain limitations (notably,
registers can only be set to data that is as
large as the register) but will be useful for
the new Materializer.
I also exposed this interface through SBValue.
I have added a testcase that exercises various
special cases of SBValue::SetData().
llvm-svn: 179437
for variables in the new Materializer. This is
much easier now that the ValueObject API is solid.
I still have to implement reading bytes into a
ValueObject, but committing what I have so far.
This code is not yet used, so there will be fixes
when I switch the expression parser over to use the
new Materializer.
llvm-svn: 179416
Made some fixes to the OperatingSystemPython class:
- If any thread dictionary contains any "core=N" key/value pairs then the threads obtained from the lldb_private::Process itself will be placed inside the ThreadMemory threads and will be used to get the information for a thread.
- Cleaned up all the places where a thread inside a thread was causing problems
llvm-svn: 179405
This patch fixes the issue that we were using the C stack as a measure of depth of ValueObject hierarchies, in the sense that we were assuming that recursive ValueObject operations would never be deeper than the stack allows.
This assumption is easy to prove wrong, however.
For instance, after ~10k runs through this loop:
struct node
{
int value;
node* child;
node (int x)
{
value = x;
child = nullptr;
}
};
int main ()
{
node root(1);
node* ptr = &root;
int j = 2;
while (1)
{
ptr->child = new node(j++);
ptr = ptr->child;
}
return 0;
}
the deepmost child object will be deeper than the stack on most architectures, and we would be unable to display it
This checkin fixes the issue by introducing a notion of root of ValueObject hierarchies.
In a couple cases, we have to use an iterative algorithm instead of going to the root because we want to allow deeper customizations (e.g. formats, dynamic values).
While the patch passes our test suite without regressions, it is a good idea to keep eyes open for any unexpected behavior (recursion can be subtle..)
Also, I am hesitant to introduce a test case since failing at this will not just be marked as an "F", but most definitely crash LLDB.
llvm-svn: 179330
Fixed a case there the OperatingSystemPython would try to access and play with SBValue objects when the process' public run lock was taken. Prior to this fix, all attempts to run any SBValue functions would fail if run from the private state thread (like updating the thread list). Now we have two run locks, one for public (all threads except the private state thread) and one for private.
llvm-svn: 179329
to the Materializer. Materialization is still done by
the ClangExpressionDeclMap; this will be the next thing
to move.
Also fixed a layout bug that this uncovered.
llvm-svn: 179318
information about each variable that needs to
be materialized for an expression to work. The
next step is to migrate all materialization code
from ClangExpressionDeclMap to Materializer, and
to use it for variable materialization.
llvm-svn: 179245
SectionList so we don't try to do anything with this file. Currently we end up crashing
later in the debug session when we read past the end of the file -- this at least gets us
closer with something like ProcessMachCore printing "error: core file has no sections".
<rdar://problem/13468295>
llvm-svn: 179152
Now we can:
1 - see the return value for functions that return types that use the "ext_vector_size"
2 - dump values that use the vector attributes ("expr $ymm0")
3 - modified the DWARF parser to correctly parse GNU vector types from the DWARF by turning them into clang::Type::ExtVector types instead of just standard arrays
llvm-svn: 178924
Introducing a negative cache for ObjCLanguageRuntime::LookupInCompleteClassCache()
This helps speed up the (common) case of us looking for classes that are hidden deep within Cocoa internals and repeatedly failing at finding type information for them.
In order for this to work, we need to clean this cache whenever debug information is added. A new symbols loaded event is added that is triggered with add-dsym (before modules loaded would be triggered for both adding modules and adding symbols).
Interested parties can register for this event. Internally, we make sure to clean the negative cache whenever symbols are added.
Lastly, ClassDescriptor::IsTagged() has been refactored to GetTaggedPointerInfo() that also (optionally) returns info and value bits. In this way, data formatters can share tagged pointer code instead of duplicating the required arithmetic.
llvm-svn: 178897
Add two initial settings for the PlatformDarwinKernel plugin,
plugin.platform.darwin-kernel.search-locally-for-kexts [true|false]
plugin.platform.darwin-kernel.kext-directories [directory list]
llvm-svn: 178846
from IRExecutionUnit into a superclass called
IRMemoryMap. IRMemoryMap handles all reading and
writing, ensuring that areas are kept track of and
memory is properly cached (and deleted).
Also fixed several cases where we would simply leak
binary data in the target process over time. Now
the expression objects explicitly own their
IRExecutionUnit and delete it when they go away. This
is why I had to modify ClangUserExpression,
ClangUtilityFunction, and ClangFunction.
As a side effect of this, I am removing the JIT
mutex for an IRMemoryMap. If it turns out that we
need this mutex, I'll add it in then, but right now
it's just adding complexity.
This is part of a more general project to make
expressions fully reusable. The next step is to
make materialization and dematerialization use
the IRMemoryMap API rather than writing and
reading directly from the process's memory.
This will allow the IR interpreter to use the
same data, but in the host's memory, without having
to use a different set of pointers.
llvm-svn: 178832
LLDB now can use a single dash for all long options for all commands form the command line and from the command interpreter. This involved just switching all calls from getopt_long() to getopt_long_only().
llvm-svn: 178789
Make lldb_private::RegularExpression thread safe everywhere. This was done by removing the m_matches array from the lldb_private::RegularExpression class and putting it into the new lldb_private::RegularExpression::Match class. When executing a regular expression you now have the option to create a lldb_private::RegularExpression::Match object and pass a pointer in if you want to get parenthesized matching. If you don't want any matching, you pass in NULL. The lldb_private::RegularExpression::Match object is initialized with the number of matches you desire. Any matching strings are now extracted from the lldb_private::RegularExpression::Match objects. This makes the regular expression objects thread safe and as a result many more regex objects were turned into static objects that end up using a local lldb_private::RegularExpression::Match object when executing.
llvm-svn: 178702
Symbol table function names should support lookups like symbols with debug info.
To fix this I:
- Gutted the way FindFunctions is used, there used to be way too much smarts only in the DWARF plug-in
- Made it more efficient by chopping the name up once and using simpler queries so that SymbolFile and Symtab plug-ins don't need to do as much
- Filter the results at a higher level
- Make the lldb_private::Symtab able to chop up C++ mangled names and make as much sense out of them as possible and also be able to search by basename, fullname, method name, and selector name.
llvm-svn: 178608
Reimplemented the NSDictionary synthetic children provider for added performance.
Instead of generating pairs by running an expression, we now create a pair type using clang-level APIs and fill in a buffer with the pointers to key and value
This strategy takes the time required to dump a 10k items __NSDictionaryM from ~45s to <4s
llvm-svn: 178601
ASTContexts that will not stay around. Before, we
did this in a very half-hearted way. Now we maintain
work queues of all Decls that need to be completed
before the source ASTContext can go away; we then
expunge their origins completely.
<rdar://problem/13511875>
llvm-svn: 178410
PC relative loads are missing disassembly comments when disassembled in a live process.
This issue was because some sections, like __TEXT and __DATA in libobjc.A.dylib, were being moved when they were put into the dyld shared cache. This could also affect any other system that slides sections individually.
The solution is to keep track of wether the bytes we will disassemble are from an executable file (file address), or from a live process (load address). We now do the right thing based off of this input in all cases.
llvm-svn: 178315
LLDB is crashing when logging is enabled from lldb-perf-clang. This has to do with the global destructor chain as the process and its threads are being torn down.
All logging channels now make one and only one instance that is kept in a global pointer which is never freed. This guarantees that logging can correctly continue as the process tears itself down.
llvm-svn: 178191
With this notion, if parties outside the ScriptInterpreter itself need to acquire a lock on script APIs, they can do so by a pattern like this:
{
auto lock = interpeter->AcquireInterpreterLock();
// do whatever you need to do...
} // lock will automatically be released here
This might be useful for classes that use the Python convenience objects (e.g. PythonDictionary) to ensure they keep the underlying interpreter in a safe and controlled condition while they call through the C API functions
Of course, the ScriptInterpreter still manages its internal locking correctly when necessary :-)
llvm-svn: 178189
- Making an error message more consistent
- Ensuring the element size is not zero before using it in a modulus
- Properly using target settings to cap the std::list element count
- Removing spurious element size calculations that were unused
- Removing spurious capping in std::map
llvm-svn: 178057
ValueObjects themselves use DumpValueObjectOptions as the currency for the same purpose
The code to convert between these two units was replicated (to varying degrees of correctness) in several spots in the code
This checkin provides one and only one (and hopefully correct :-) entry point for this conversion
llvm-svn: 178044
DWARFCallFrameInfo method which returns a RangeVector pre-size the
vector based on the number of entries it will be adding insted of
growing the vector as items are added.
llvm-svn: 177773
Clang requires them to have complete types, but
we were previously only completing them if they
were of tag or Objective-C object types.
I have implemented a method on the ASTImporter
whose job is to complete a type. It handles not
only the cases mentioned above, but also array
and atomic types.
<rdar://problem/13446777>
llvm-svn: 177672
This returns a vector of <file address, size> entries for all of
the functions in the module that have an eh_frame FDE.
Update ObjectFileMachO to use the eh_frame FDE function addresses if
the LC_FUNCTION_STARTS section is missing, to fill in the start
addresses of any symbols that have been stripped from the binary.
Generally speaking, lldb works best if it knows the actual start
address of every function in a module - it's especially important
for unwinding, where lldb inspects the instructions in the prologue
of the function. In a stripped binary, it is deprived of this
information and it reduces the quality of our unwinds and saved
register retrieval.
Other ObjectFile users may want to use the function addresses from
DWARFCallFrameInfo to fill in any stripped symbols like ObjectFileMachO
does already.
<rdar://problem/13365659>
llvm-svn: 177624
track the EH FDEs for the functions in a module to using a
RangeDataVector, a more light-weight data structure that only refers
to File addresses. Makes the initial FDE scan about 3x faster, uses
less memory.
<rdar://problem/13465650>
llvm-svn: 177585
of the data it writes down into the process even
if the process doesn't exist. This will allow
the IR interpreter to access static data allocated
on the expression's behalf.
Also cleaned up object ownership in the
IRExecutionUnit so that allocations are created
into the allocations vector. This avoids needless
data copies.
<rdar://problem/13424594>
llvm-svn: 177456
Fixed a crasher in the SourceManager where it wasn't checking the m_target member variable for NULL.
In doing this fix, I hardened this class to have weak pointers to the debugger and target in case they do go away. I also changed SBSourceManager to hold onto weak pointers to the debugger and target so they don't keep objects alive by holding a strong reference to them.
llvm-svn: 177365
and the JITted code are managed by a standalone
class that handles memory management itself.
I have removed RecordingMemoryManager and
ProcessDataAllocator, which filled similar roles
and had confusing ownership, with a common class
called IRExecutionUnit. The IRExecutionUnit
manages all allocations ever made for an expression
and frees them when it goes away. It also contains
the code generator and can vend the Module for an
expression to other clases.
The end goal here is to make the output of the
expression parser re-usable; that is, to avoid
re-parsing when re-parsing isn't necessary.
I've also cleaned up some code and used weak pointers
in more places. Please let me know if you see any
leaks; I checked myself as well but I might have
missed a case.
llvm-svn: 177364