involving substitution of deduced template arguments into a class
template partial specialization or function template, or when
substituting explicitly-specific template arguments into a function
template. We now print the actual deduced argument bindings so the
user can see what got deduced.
llvm-svn: 99923
check deduced non-type template arguments and template template
arguments against the template parameters for which they were deduced,
performing conversions as appropriate so that deduced template
arguments get the same treatment as explicitly-specified template
arguments. This is the bulk of PR6723.
Also keep track of whether deduction of a non-type template argument
came from an array bound (vs. anywhere else). With this information,
we enforce C++ [temp.deduct.type]p17, which requires exact type
matches when deduction deduces a non-type template argument from
something that is not an array bound.
Finally, when in a SFINAE context, translate the "zero sized
arrays are an extension" extension diagnostic into a hard error (for
better standard conformance), which was a minor part of PR6723.
llvm-svn: 99734
- When substituting template arguments as part of template argument
deduction, introduce a new local instantiation scope.
- When substituting into a function prototype type, introduce a new
"temporary" local instantiation scope that merges with its outer
scope but also keeps track of any additions it makes, removing
them when we exit that scope.
Fixes PR6700, where we were getting too much mixing of local
instantiation scopes due to template argument deduction that
substituted results into function types.
llvm-svn: 99509
instantiation. Based on a patch by Enea Zaffanella! I found a way to
reduce some of the redundancy between TreeTransform's "standard"
FunctionProtoType transformation and TemplateInstantiator's override,
and I killed off the old SubstFunctionType by adding type source info
for the last cases where we were creating FunctionDecls without TSI
(at least that get passed through template instantiation).
llvm-svn: 98252
class types, dependent types, and namespaces. I had previously
weakened this invariant while working on parsing pseudo-destructor
expressions, but recent work in that area has made these changes
unnecessary.
llvm-svn: 97112
typedef int Int;
int *p;
p->Int::~Int();
This weakens the invariant that the only types in nested-name-specifiers are tag types (restricted to class types in C++98/03). However, we weaken this invariant as little as possible, accepting arbitrary types in nested-name-specifiers only when we're in a member access expression that looks like a pseudo-destructor expression.
llvm-svn: 96743
now cope with the destruction of types named as dependent templates,
e.g.,
y->template Y<T>::~Y()
Nominally, we implement C++0x [basic.lookup.qual]p6. However, we don't
follow the letter of the standard here because that would fail to
parse
template<typename T, typename U>
X0<T, U>::~X0() { }
properly. The problem is captured in core issue 339, which gives some
(but not enough!) guidance. I expect to revisit this code when the
resolution of 339 is clear, and/or we start capturing better source
information for DeclarationNames.
Fixes PR6152.
llvm-svn: 96367
non-type template parameter that has reference type, augment the
qualifiers of the non-type template argument with those of the
referenced type. Fixes PR6250.
llvm-svn: 95607
params. Don't insert addrof operations when matching against a pointer;
array/function conversions should take care of this for us, assuming the
argument type-checked in the first place. Add a fixme where we seem to be
using a less-restrictive reference type than we should.
Fixes PR 6249.
llvm-svn: 95495
when instantiating the declaration of a member template:
- Only check if the have a template template argument at a specific position
when we already know that we have template arguments at that level;
otherwise, we're substituting for a level-reduced template template
parameter.
- When trying to find an instantiated declaration for a template
template parameter, look into the instantiated scope. This was a
typo, where we had two checks for TemplateTypeParmDecl, one of
which should have been a TemplateTemplateParmDecl.
With these changes, tramp3d-v4 passes -fsyntax-only.
llvm-svn: 95421
template parameter, perform array/function decay (if needed), take the
address of the argument (if needed), perform qualification conversions
(if needed), and remove any top-level cv-qualifiers from the resulting
expression. Fixes PR6226.
llvm-svn: 95309
deterministic and work properly with templates. Once a class that
needs a vtable has been defined, we now do one if two things:
- If the class has no key function, we place the class on a list of
classes whose virtual functions will need to be "marked" at the
end of the translation unit. The delay until the end of the
translation unit is needed because we might see template
specializations of these virtual functions.
- If the class has a key function, we do nothing; when the key
function is defined, the class will be placed on the
aforementioned list.
At the end of the translation unit, we "mark" all of the virtual
functions of the classes on the list as used, possibly causing
template instantiation and other classes to be added to the
list. This gets LLVM's lib/Support/CommandLine.cpp compiling again.
llvm-svn: 92821
expressions (e.g., for template instantiation), just transform the
subexpressions and return those, since the temporary-related nodes
will be implicitly regenerated. Fixes PR5867, but I said that
before...
llvm-svn: 92135
horrible isAddressOfOperand hack in TreeTransform, since that syntactic
information is managed by the initial parser callbacks now.
That's enough insomniac commits for one night.
llvm-svn: 90849
instantiation, to ensure that we mark class template specilizations as
abstract when we need to and perform checking of abstract classes.
Also, move the checking that determines whether we are creating a
variable of abstract class type *after* we check whether the type is
complete. Otherwise, we won't see when we have an abstract class
template specialization that is implicitly instantiated by this
declaration. This is the "something else" that Sebastian had noted
earlier.
llvm-svn: 90467
DependentScopeDeclRefExpr support storing templateids. Unite the common
code paths between ActOnDeclarationNameExpr and ActOnTemplateIdExpr.
This gets us to a point where we don't need to store function templates in
the AST using TemplateNames, which is critical to ripping out OverloadedFunction.
Also resolves a few FIXMEs.
llvm-svn: 89785
into pretty much everything about overload resolution in order to wean
BuildDeclarationNameExpr off LookupResult::getAsSingleDecl(). Replace
UnresolvedFunctionNameExpr with UnresolvedLookupExpr, which generalizes the
idea of a non-member lookup that we haven't totally resolved yet, whether by
overloading, argument-dependent lookup, or (eventually) the presence of
a function template in the lookup results.
Incidentally fixes a problem with argument-dependent lookup where we were
still performing ADL even when the lookup results contained something from
a block scope.
Incidentally improves a diagnostic when using an ObjC ivar from a class method.
This just fell out from rewriting BuildDeclarationNameExpr's interaction with
lookup, and I'm too apathetic to break it out.
The only remaining uses of OverloadedFunctionDecl that I know of are in
TemplateName and MemberExpr.
llvm-svn: 89544
member type (e.g., T Class::*Member), build a pointer-to-member
constant expression. Previously, we we just building a simple
declaration reference expression, which meant that the expression was
not treated as a pointer to member.
llvm-svn: 87000
with its corresponding template parameter. This can happen when we
performed some substitution into the default template argument and
what we had doesn't match any more, e.g.,
template<int> struct A;
template<typename T, template<T> class X = A> class B;
B<long> b;
Previously, we'd emit a pretty but disembodied diagnostic showing how
the default argument didn't match the template parameter. The
diagnostic was good, but nothing tied it to the *use* of the default
argument in "B<long>". This commit fixes that.
Also, tweak the counting of active template instantiations to avoid
counting non-instantiation records, such as those we create for
(surprise!) checking default arguments, instantiating default
arguments, and performing substitutions as part of template argument
deduction.
llvm-svn: 86884
template template parameter, substitute any prior template arguments
into the template template parameter. This, for example, allows us to
properly check the template template argument for a class such as:
template<typename T, template<T Value> class X> struct Foo;
The actual implementation of this feature was trivial; most of the
change is dedicated to giving decent diagnostics when this
substitution goes horribly wrong. We now get a note like:
note: while substituting prior template arguments into template
template parameter 'X' [with T = float]
As part of this change, enabled some very pedantic checking when
comparing template template parameter lists, which shook out a bug in
our overly-eager checking of default arguments of template template
parameters. We now perform only minimal checking of such default
arguments when they are initially parsed.
llvm-svn: 86864
parameters. Rather than storing them as either declarations (for the
non-dependent case) or expressions (for the dependent case), we now
(always) store them as TemplateNames.
The primary change here is to add a new kind of TemplateArgument,
which stores a TemplateName. However, making that change ripples to
every switch on a TemplateArgument's kind, also affecting
TemplateArgumentLocInfo/TemplateArgumentLoc, default template
arguments for template template parameters, type-checking of template
template arguments, etc.
This change is light on testing. It should fix several pre-existing
problems with template template parameters, such as:
- the inability to use dependent template names as template template
arguments
- template template parameter default arguments cannot be
instantiation
However, there are enough pieces missing that more implementation is
required before we can adequately test template template parameters.
llvm-svn: 86777
templates. The instantiation of these default arguments must be (and
now, is) delayed until the template argument is actually used, at
which point we substitute all levels of template arguments
concurrently.
llvm-svn: 86578
expressions, keep track of whether we are immediately taking the
address of the expression. Pass this flag when building a declaration
name expression so that we handle pointer-to-member constants
properly.
llvm-svn: 86017
parameters and template type parameters, which occurs when
substituting into the declarations of member templates inside class
templates. This eliminates errors about our inability to "reduce
non-type template parameter depth", fixing PR5311.
Also fixes a bug when instantiating a template type parameter
declaration in a member template, where we weren't properly reducing
the template parameter's depth.
LLVM's StringSwitch header now parses.
llvm-svn: 85669
types. Preserve it through template instantiation. Preserve it through PCH,
although TSTs themselves aren't serializable, so that's pretty much meaningless.
llvm-svn: 85500
class template partial specializations of member templates. Also,
fixes a silly little bug in the marking of "used" template parameters
in member templates. Fixes PR5236.
llvm-svn: 85447
members that have a definition. Also, use
CheckSpecializationInstantiationRedecl as part of this instantiation
to make sure that we diagnose the various kinds of problems that can
occur with explicit instantiations.
llvm-svn: 85270
instantiation once we have committed to performing the
instantiation. As part of this, make our makeshift
template-instantiation location information suck slightly less.
Fixes PR5264.
llvm-svn: 85209
qualified reference to a declaration that is not a non-static data
member or non-static member function, e.g.,
namespace N { int i; }
int j = N::i;
Instead, extend DeclRefExpr to optionally store the qualifier. Most
clients won't see or care about the difference (since
QualifierDeclRefExpr inherited DeclRefExpr). However, this reduces the
number of top-level expression types that clients need to cope with,
brings the implementation of DeclRefExpr into line with MemberExpr,
and simplifies and unifies our handling of declaration references.
Extended DeclRefExpr to (optionally) store explicitly-specified
template arguments. This occurs when naming a declaration via a
template-id (which will be stored in a TemplateIdRefExpr) that,
following template argument deduction and (possibly) overload
resolution, is replaced with a DeclRefExpr that refers to a template
specialization but maintains the template arguments as written.
llvm-svn: 84962
TemplateTypeParmType with the substituted type directly; instead, replace it
with a SubstTemplateTypeParmType which will note that the type was originally
written as a template type parameter. This makes it reasonable to preserve
source information even through template substitution.
Also define the new SubstTemplateTypeParmType class, obviously.
For consistency with current behavior, we stringize these types as if they
were the underlying type. I'm not sure this is the right thing to do.
At any rate, I paled at adding yet another clause to the don't-desugar 'if'
statement, so I extracted a function to do it. The new function also does
The Right Thing more often, I think: e.g. if we have a chain of typedefs
leading to a vector type, we will now desugar all but the last one.
llvm-svn: 84412
specializations. Work in progress; there's more cleanup required to
actually use the new CheckSpecializationInstantiationRedecl checker
uniformly.
llvm-svn: 84185
template as a specialization. For example, this occurs with:
template<typename T>
struct X {
template<typename U> struct Inner { /* ... */ };
};
template<> template<typename T>
struct X<int>::Inner {
T member;
};
We need to treat templates that are member specializations as special
in two contexts:
- When looking for a definition of a member template, we look
through the instantiation chain until we hit the primary template
*or a member specialization*. This allows us to distinguish
between the primary "Inner" definition and the X<int>::Inner
definition, above.
- When computing all of the levels of template arguments needed to
instantiate a member template, don't add template arguments
from contexts outside of the instantiation of a member
specialization, since the user has already manually substituted
those arguments.
Fix up the existing test for p18, which was actually wrong (but we
didn't diagnose it because of our poor handling of member
specializations of templates), and add a new test for member
specializations of templates.
llvm-svn: 83974
templates, and keep track of how those member classes were
instantiated or specialized.
Make sure that we don't try to instantiate an explicitly-specialized
member class of a class template, when that explicit specialization
was a declaration rather than a definition.
llvm-svn: 83547
track of the kind of specialization or instantiation. Also, check the
scope of the specialization and ensure that a specialization
declaration without an initializer is not a definition.
llvm-svn: 83533
function of a class template was implicitly instantiated, explicitly
instantiated (declaration or definition), or explicitly
specialized. The same MemberSpecializationInfo structure will be used
for static data members and member classes as well.
llvm-svn: 83509
Type hierarchy. Demote 'volatile' to extended-qualifier status. Audit our
use of qualifiers and fix a few places that weren't dealing with qualifiers
quite right; many more remain.
llvm-svn: 82705
when we are not instantiating the corresponding "current
instantiation." This happens, e.g., when we are instantiating a
declaration reference that refers into the "current instantiation" but
occurs in a default function argument. The libstdc++ vector default
constructor now instantiates properly.
llvm-svn: 82069
instantiation definition can follow an explicit instantiation
declaration. This is as far as I want to go with extern templates now,
but they will still need quite a bit more work to get all of the C++0x
semantics right.
llvm-svn: 81573
from its location. Initialize appropriately.
When implicitly creating a declaration of a class template specialization
after encountering the first reference to it, use the pattern class's
location instead of the location of the first reference.
llvm-svn: 81515
templates. We now distinguish between an explicit instantiation
declaration and an explicit instantiation definition, and know not to
instantiate explicit instantiation declarations. Unfortunately, there
is some remaining confusion w.r.t. instantiation of out-of-line member
function definitions that causes trouble here.
llvm-svn: 81053
involve qualified names, e.g., x->Base::f. We now maintain enough
information in the AST to compare the results of the name lookup of
"Base" in the scope of the postfix-expression (determined at template
definition time) and in the type of the object expression.
llvm-svn: 80953
When performing template instantiation of the definitions of member
templates (or members thereof), we build a data structure containing
the template arguments from each "level" of template
instantiation. During template instantiation, we substitute all levels
of template arguments simultaneously.
llvm-svn: 80389
that type. Note that we do not produce a diagnostic if the type is
incomplete; rather, we just don't look for conversion functions. Fixes PR4660.
llvm-svn: 79919
transform, then use the result for template instantiation. The generic
transformation fixes a few issues:
- It copes better with template template parameters and member
templates (when they're implemented).
- The logic used to replace template template parameters with their
arguments is now centralized in TransformDecl, so that it will apply
for other declaration-instantiation steps.
- The error-recovery strategy is normalized now, so that any error
results in a NULL TemplateName.
llvm-svn: 78292
general tree transformation. Also, implement template instantiation
for parameter packs.
In addition, introduce logic to enter the appropriate context for
subexpressions that are not potentially evaluated.
llvm-svn: 78114
transformation template (TreeTransform) that handles the
transformation and reconstruction of AST nodes. Template instantiation
for types is a (relatively small) customization of the generic tree
transformation.
llvm-svn: 78071
template partial specialization. Then, use those template arguments
when instantiating members of that class template partial
specialization. Fixes PR4607.
llvm-svn: 77925
Note that this also fixes a bug that affects non-template code, where we
were not treating out-of-line static data members are "file-scope" variables,
and therefore not checking their initializers.
llvm-svn: 77002