This patch introduces 2 new address spaces in OpenCL: global_device and global_host
which are a subset of a global address space, so the address space scheme will be
looking like:
```
generic->global->host
->device
->private
->local
constant
```
Justification: USM allocations may be associated with both host and device memory. We
want to give users a way to tell the compiler the allocation type of a USM pointer for
optimization purposes. (Link to the Unified Shared Memory extension:
https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/USM/cl_intel_unified_shared_memory.asciidoc)
Before this patch USM pointer could be only in opencl_global
address space, hence a device backend can't tell if a particular pointer
points to host or device memory. On FPGAs at least we can generate more
efficient hardware code if the user tells us where the pointer can point -
being able to distinguish between these types of pointers at compile time
allows us to instantiate simpler load-store units to perform memory
transactions.
Patch by Dmitry Sidorov.
Reviewed By: Anastasia
Differential Revision: https://reviews.llvm.org/D82174
Use 'o' for the mangling specification instead of 'e'. This fixes an
error in the backend caused by a mismatch between the data layouts
generated by the backend and the frontend.
rdar://problem/64168540
We currently have strict floating point/constrained floating point enabled
for all targets. Constrained SDAG nodes get converted to the regular ones
before reaching the target layer. In theory this should be fine.
However, the changes are exposed to users through multiple clang options
already in use in the field, and the changes are _completely_ _untested_
on almost all of our targets. Bugs have already been found, like
"https://bugs.llvm.org/show_bug.cgi?id=45274".
This patch disables constrained floating point options in clang everywhere
except X86 and SystemZ. A warning will be printed when this happens.
Use the new -fexperimental-strict-floating-point flag to force allowing
strict floating point on hosts that aren't already marked as supporting
it (X86 and SystemZ).
Differential Revision: https://reviews.llvm.org/D80952
setFeatureEnabled is a virtual function. setFeatureEnabledImpl
was its implementation. This split was to avoid virtual calls
when we need to call setFeatureEnabled in initFeatureMap.
With C++11 we can use 'final' on setFeatureEnabled to enable
the compiler to perform de-virtualization for the initFeatureMap
calls.
Previously we had to specify the forward and backwards feature dependencies separately which was error prone. And as dependencies have gotten more complex it was hard to be sure the transitive dependencies were handled correctly. The way it was written was also not super readable.
This patch replaces everything with a table that lists what features a feature is dependent on directly. Then we can recursively walk through the table to find the transitive dependencies. This is largely based on how we handle subtarget features in the MC layer from the tablegen descriptions.
Differential Revision: https://reviews.llvm.org/D83273
We currently have strict floating point/constrained floating point enabled
for all targets. Constrained SDAG nodes get converted to the regular ones
before reaching the target layer. In theory this should be fine.
However, the changes are exposed to users through multiple clang options
already in use in the field, and the changes are _completely_ _untested_
on almost all of our targets. Bugs have already been found, like
"https://bugs.llvm.org/show_bug.cgi?id=45274".
This patch disables constrained floating point options in clang everywhere
except X86 and SystemZ. A warning will be printed when this happens.
Differential Revision: https://reviews.llvm.org/D80952
Similar to what some other targets have done. This information
could be reused by other frontends so doesn't make sense to live
in clang.
-Rename CK_Generic to CK_None to better reflect its illegalness.
-Move function for translating from string to enum into llvm.
-Call checkCPUKind directly from the string to enum translation
and update CPU kind to CK_None accordinly. Caller will use CK_None
as sentinel for bad CPU.
I'm planning to move all the CPU to feature mapping out next. As
part of that I want to devise a better way to express CPUs inheriting
features from an earlier CPU. Allowing this to be expressed in a
less rigid way than just falling through a switch. Or using gotos
as we've had to do lately.
Differential Revision: https://reviews.llvm.org/D81439
Since the _ExtInt type got into the repo, we've discovered that the ABI
implications weren't completely understood. The other architectures are
going to be audited (see D79118), however downstream targets aren't
going to benefit from this audit.
This patch disables the _ExtInt type by default and makes the
target-info an opt-in. As it is audited, I'll re-enable these for all
of our default targets.
Summary:
This patch adds a virtual method `getCPUCacheLineSize()` to `TargetInfo`. Currently, I've only implemented the method in `X86TargetInfo`. It's extremely important that each CPU's cache line size correct (e.g., we can't just define it as `64` across the board) so, it has been a little slow getting to this point.
I'll work on the ARM CPUs next, but that will probably come later in a different patch.
Tags: #clang
Differential Revision: https://reviews.llvm.org/D74918
Implement protection against the stack clash attack [0] through inline stack
probing.
Probe stack allocation every PAGE_SIZE during frame lowering or dynamic
allocation to make sure the page guard, if any, is touched when touching the
stack, in a similar manner to GCC[1].
This extends the existing `probe-stack' mechanism with a special value `inline-asm'.
Technically the former uses function call before stack allocation while this
patch provides inlined stack probes and chunk allocation.
Only implemented for x86.
[0] https://www.qualys.com/2017/06/19/stack-clash/stack-clash.txt
[1] https://gcc.gnu.org/ml/gcc-patches/2017-07/msg00556.html
This a recommit of 39f50da2a3 with proper LiveIn
declaration, better option handling and more portable testing.
Differential Revision: https://reviews.llvm.org/D68720
Implement protection against the stack clash attack [0] through inline stack
probing.
Probe stack allocation every PAGE_SIZE during frame lowering or dynamic
allocation to make sure the page guard, if any, is touched when touching the
stack, in a similar manner to GCC[1].
This extends the existing `probe-stack' mechanism with a special value `inline-asm'.
Technically the former uses function call before stack allocation while this
patch provides inlined stack probes and chunk allocation.
Only implemented for x86.
[0] https://www.qualys.com/2017/06/19/stack-clash/stack-clash.txt
[1] https://gcc.gnu.org/ml/gcc-patches/2017-07/msg00556.html
This a recommit of 39f50da2a3 with proper LiveIn
declaration, better option handling and more portable testing.
Differential Revision: https://reviews.llvm.org/D68720
Implement protection against the stack clash attack [0] through inline stack
probing.
Probe stack allocation every PAGE_SIZE during frame lowering or dynamic
allocation to make sure the page guard, if any, is touched when touching the
stack, in a similar manner to GCC[1].
This extends the existing `probe-stack' mechanism with a special value `inline-asm'.
Technically the former uses function call before stack allocation while this
patch provides inlined stack probes and chunk allocation.
Only implemented for x86.
[0] https://www.qualys.com/2017/06/19/stack-clash/stack-clash.txt
[1] https://gcc.gnu.org/ml/gcc-patches/2017-07/msg00556.html
This a recommit of 39f50da2a3 with better option
handling and more portable testing
Differential Revision: https://reviews.llvm.org/D68720
Implement protection against the stack clash attack [0] through inline stack
probing.
Probe stack allocation every PAGE_SIZE during frame lowering or dynamic
allocation to make sure the page guard, if any, is touched when touching the
stack, in a similar manner to GCC[1].
This extends the existing `probe-stack' mechanism with a special value `inline-asm'.
Technically the former uses function call before stack allocation while this
patch provides inlined stack probes and chunk allocation.
Only implemented for x86.
[0] https://www.qualys.com/2017/06/19/stack-clash/stack-clash.txt
[1] https://gcc.gnu.org/ml/gcc-patches/2017-07/msg00556.html
This a recommit of 39f50da2a3 with correct option
flags set.
Differential Revision: https://reviews.llvm.org/D68720
This reverts commit 39f50da2a3.
The -fstack-clash-protection is being passed to the linker too, which
is not intended.
Reverting and fixing that in a later commit.
Implement protection against the stack clash attack [0] through inline stack
probing.
Probe stack allocation every PAGE_SIZE during frame lowering or dynamic
allocation to make sure the page guard, if any, is touched when touching the
stack, in a similar manner to GCC[1].
This extends the existing `probe-stack' mechanism with a special value `inline-asm'.
Technically the former uses function call before stack allocation while this
patch provides inlined stack probes and chunk allocation.
Only implemented for x86.
[0] https://www.qualys.com/2017/06/19/stack-clash/stack-clash.txt
[1] https://gcc.gnu.org/ml/gcc-patches/2017-07/msg00556.html
Differential Revision: https://reviews.llvm.org/D68720
The validateOutputSize and validateInputSize need to check whether
AVX or AVX512 are enabled. But this can be affected by the
target attribute so we need to factor that in.
This patch moves some of the code from CodeGen to create an
appropriate feature map that we can pass to the function.
Differential Revision: https://reviews.llvm.org/D68627
Summary:
This adds parsing of the qualifiers __ptr32, __ptr64, __sptr, and __uptr and
lowers them to the corresponding address space pointer for 32-bit and 64-bit pointers.
(32/64-bit pointers added in https://reviews.llvm.org/D69639)
A large part of this patch is making these pointers ignore the address space
when doing things like overloading and casting.
https://bugs.llvm.org/show_bug.cgi?id=42359
Reviewers: rnk, rsmith
Subscribers: jholewinski, jvesely, nhaehnle, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D71039
The validateOutputSize and validateInputSize need to check whether
AVX or AVX512 are enabled. But this can be affected by the
target attribute so we need to factor that in.
This patch copies some of the code from CodeGen to create an
appropriate feature map that we can pass to the function. Probably
need some refactoring here to share more code with Codegen. Is
there a good place to do that? Also need to support the cpu_specific
attribute as well.
Differential Revision: https://reviews.llvm.org/D68627
-Deprecate -mmpx and -mno-mpx command line options
-Remove CPUID detection of mpx for -march=native
-Remove MPX from all CPUs
-Remove MPX preprocessor define
I've left the "mpx" string in the backend so we don't fail on old IR, but its not connected to anything.
gcc has also deprecated these command line options. https://www.phoronix.com/scan.php?page=news_item&px=GCC-Patch-To-Drop-MPX
Differential Revision: https://reviews.llvm.org/D66669
llvm-svn: 370393
This seems to be an old vestage of a previous implementation of getting
the default calling convention, and everything is now using
CXXABI/ASTContext's getDefaultCallingConvention. Remove it, since it
isn't doing anything.
llvm-svn: 367039
This patch makes the driver option -mlong-double-128 available for X86
and PowerPC. The CC1 option -mlong-double-128 is available on all targets
for users to test on unsupported targets.
On PowerPC, -mlong-double-128 uses the IBM extended double format
because we don't support -mabi=ieeelongdouble yet (D64283).
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D64277
llvm-svn: 365866
These macro definitions don't depend on the template parameter, so they
don't need to be part of the template. Move them to a .cpp file.
llvm-svn: 365556
In gcc PowerPC, long double has 3 mangling schemes:
-mlong-double-64: `e`
-mlong-double-128 -mabi=ibmlongdouble: `g`
-mlong-double-128 -mabi=ieeelongdouble: `u9__ieee128` (gcc <= 8.1: `U10__float128`)
The current useFloat128ManglingForLongDouble() bisection is not suitable
when we support -mlong-double-128 in clang (D64277). Replace
useFloat128ManglingForLongDouble() with getLongDoubleMangling() and
getFloat128Mangling() to allow 3 mangling schemes.
I also deleted the `getTriple().isOSBinFormatELF()` check (the Darwin
support has gone: https://reviews.llvm.org/D50988).
For x86, change the mangled code of __float128 from `U10__float128` to `g`. `U10__float128` was wrongly copied from PowerPC.
The test will be added to `test/CodeGen/x86-long-double.cpp` in D64277.
Reviewed By: erichkeane
Differential Revision: https://reviews.llvm.org/D64276
llvm-svn: 365480
Summary:
1. Enable infrastructure of AVX512_BF16, which is supported for BFLOAT16 in Cooper Lake;
2. Enable intrinsics for VCVTNE2PS2BF16, VCVTNEPS2BF16 and DPBF16PS instructions, which are Vector Neural Network Instructions supporting BFLOAT16 inputs and conversion instructions from IEEE single precision.
For more details about BF16 intrinsic, please refer to the latest ISE document: https://software.intel.com/en-us/download/intel-architecture-instruction-set-extensions-programming-reference
Patch by LiuTianle
Reviewers: craig.topper, smaslov, LuoYuanke, wxiao3, annita.zhang, spatel, RKSimon
Reviewed By: craig.topper
Subscribers: mgorny, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D60552
llvm-svn: 360018
Use the new cx8 feature flag that was added to the backend to represent support for cmpxchg8b. Use this flag to set the MaxAtomicInlineWidth.
This also assumes all the cmpxchg instructions are enabled for CK_Generic which is what cc1 defaults to when nothing is specified.
Differential Revision: https://reviews.llvm.org/D59566
llvm-svn: 356709
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
This patch should not introduce any behavior changes. It consists of
mostly one of two changes:
1. Replacing fall through comments with the LLVM_FALLTHROUGH macro
2. Inserting 'break' before falling through into a case block consisting
of only 'break'.
We were already using this warning with GCC, but its warning behaves
slightly differently. In this patch, the following differences are
relevant:
1. GCC recognizes comments that say "fall through" as annotations, clang
doesn't
2. GCC doesn't warn on "case N: foo(); default: break;", clang does
3. GCC doesn't warn when the case contains a switch, but falls through
the outer case.
I will enable the warning separately in a follow-up patch so that it can
be cleanly reverted if necessary.
Reviewers: alexfh, rsmith, lattner, rtrieu, EricWF, bollu
Differential Revision: https://reviews.llvm.org/D53950
llvm-svn: 345882
Similar to how ICC handles CPU-Dispatch on Windows, this patch uses the
resolver function directly to forward the call to the proper function.
This is not nearly as efficient as IFuncs of course, but is still quite
useful for large functions specifically developed for certain
processors.
This is unfortunately still limited to x86, since it depends on
__builtin_cpu_supports and __builtin_cpu_is, which are x86 builtins.
The naming for the resolver/forwarding function for cpu-dispatch was
taken from ICC's implementation, which uses the unmodified name for this
(no mangling additions). This is possible, since cpu-dispatch uses '.A'
for the 'default' version.
In 'target' multiversioning, this function keeps the '.resolver'
extension in order to keep the default function keeping the default
mangling.
Change-Id: I4731555a39be26c7ad59a2d8fda6fa1a50f73284
Differential Revision: https://reviews.llvm.org/D53586
llvm-svn: 345298
As reported on http://lists.llvm.org/pipermail/cfe-dev/2018-August/058760.html,
this broke i386-freebsd11 due to its lack of atomic 64 bit primitives.
While that's not really this commit's fault, let's revert back to the old
behaviour until this can be fixed. This means generating cmpxchg8b etc for i386
and i486 which don't technically support those, but that's been the behaviour
for a long time, so a little longer probably doesn't hurt that much.
> Adjust MaxAtomicInlineWidth for i386/i486 targets.
>
> This is to fix the bug reported in https://bugs.llvm.org/show_bug.cgi?id=34347#c6.
> Currently, all MaxAtomicInlineWidth of x86-32 targets are set to 64. However,
> i386 doesn't support any cmpxchg related instructions. i486 only supports cmpxchg.
> So in this patch MaxAtomicInlineWidth is reset as follows:
> For i386, the MaxAtomicInlineWidth should be 0 because no cmpxchg is supported.
> For i486, the MaxAtomicInlineWidth should be 32 because it supports cmpxchg.
> For others 32 bits x86 cpu, the MaxAtomicInlineWidth should be 64 because of cmpxchg8b.
>
> Differential Revision: https://reviews.llvm.org/D42154
llvm-svn: 340666
subtarget features for indirect calls and indirect branches.
This is in preparation for enabling *only* the call retpolines when
using speculative load hardening.
I've continued to use subtarget features for now as they continue to
seem the best fit given the lack of other retpoline like constructs so
far.
The LLVM side is pretty simple. I'd like to eventually get rid of the
old feature, but not sure what backwards compatibility issues that will
cause.
This does remove the "implies" from requesting an external thunk. This
always seemed somewhat questionable and is now clearly not desirable --
you specify a thunk the same way no matter which set of things are
getting retpolines.
I really want to keep this nicely isolated from end users and just an
LLVM implementation detail, so I've moved the `-mretpoline` flag in
Clang to no longer rely on a specific subtarget feature by that name and
instead to be directly handled. In some ways this is simpler, but in
order to preserve existing behavior I've had to add some fallback code
so that users who relied on merely passing -mretpoline-external-thunk
continue to get the same behavior. We should eventually remove this
I suspect (we have never tested that it works!) but I've not done that
in this patch.
Differential Revision: https://reviews.llvm.org/D51150
llvm-svn: 340515
Summary: Microsoft's C++ object model for ARM64 is the same as that for X86_64.
For example, small structs with non-trivial copy constructors or virtual
function tables are passed indirectly. Currently, they are passed in registers
when compiled with clang.
Reviewers: rnk, mstorsjo, TomTan, haripul, javed.absar
Reviewed By: rnk, mstorsjo
Subscribers: kristof.beyls, chrib, llvm-commits, cfe-commits
Differential Revision: https://reviews.llvm.org/D49770
llvm-svn: 338076
As documented here: https://software.intel.com/en-us/node/682969 and
https://software.intel.com/en-us/node/523346. cpu_dispatch multiversioning
is an ICC feature that provides for function multiversioning.
This feature is implemented with two attributes: First, cpu_specific,
which specifies the individual function versions. Second, cpu_dispatch,
which specifies the location of the resolver function and the list of
resolvable functions.
This is valuable since it provides a mechanism where the resolver's TU
can be specified in one location, and the individual implementions
each in their own translation units.
The goal of this patch is to be source-compatible with ICC, so this
implementation diverges from the ICC implementation in a few ways:
1- Linux x86/64 only: This implementation uses ifuncs in order to
properly dispatch functions. This is is a valuable performance benefit
over the ICC implementation. A future patch will be provided to enable
this feature on Windows, but it will obviously more closely fit ICC's
implementation.
2- CPU Identification functions: ICC uses a set of custom functions to identify
the feature list of the host processor. This patch uses the cpu_supports
functionality in order to better align with 'target' multiversioning.
1- cpu_dispatch function def/decl: ICC's cpu_dispatch requires that the function
marked cpu_dispatch be an empty definition. This patch supports that as well,
however declarations are also permitted, since the linker will solve the
issue of multiple emissions.
Differential Revision: https://reviews.llvm.org/D47474
llvm-svn: 337552
Adding __attribute__((aligned(32))) to __m256 breaks the implementation
of _mm256_loadu_ps on Windows. On Windows, alignment attributes have
higher precedence than packing attributes.
We also might want to carefully consider the consequences of changing
our vector typedefs, since many users copy them and invent their own
new, non-Intel specific vector type names.
llvm-svn: 333958
This fixes two major problems:
- We were not capping vector alignment as desired on 32-bit ARM.
- We were using different alignments based on the AVX settings on
Intel, so we did not have a consistent ABI.
This is an ABI break, but we think we can get away with it because
vectors tend to be used mostly in inline code (which is why not having
a consistent ABI has not proven disastrous on Intel).
Intel's AVX types are specified as having 32-byte / 64-byte alignment,
so align them explicitly instead of relying on the base ABI rule.
Note that this sort of attribute is stripped from template arguments
in template substitution, so there's a possibility that code templated
over vectors will produce inadequately-aligned objects. The right
long-term solution for this is for alignment attributes to be
interpreted as true qualifiers and thus preserved in the canonical type.
llvm-svn: 333791