BlockArguments gained the ability to have locations attached a while ago, but they
have always been optional. This goes against the core tenant of MLIR where location
information is a requirement, so this commit updates the API to require locations.
Fixes#53279
Differential Revision: https://reviews.llvm.org/D117633
The current state of the top level Analysis/ directory is that it contains two libraries;
a generic Analysis library (free from dialect dependencies), and a LoopAnalysis library
that contains various analysis utilities that originated from Affine loop transformations.
This commit moves the LoopAnalysis to the more appropriate home of `Dialect/Affine/Analysis/`,
given the use and intention of the majority of the code within it. After the move, if there
are generic utilities that would fit better in the top-level Analysis/ directory, we can move
them.
Differential Revision: https://reviews.llvm.org/D117351
Precursor: https://reviews.llvm.org/D110200
Removed redundant ops from the standard dialect that were moved to the
`arith` or `math` dialects.
Renamed all instances of operations in the codebase and in tests.
Reviewed By: rriddle, jpienaar
Differential Revision: https://reviews.llvm.org/D110797
This patch introduces a generic reduction detection utility that works
across different dialecs. It is mostly a generalization of the reduction
detection algorithm in Affine. The reduction detection logic in Affine,
Linalg and SCFToOpenMP have been replaced with this new generic utility.
The utility takes some basic components of the potential reduction and
returns: 1) the reduced value, and 2) a list with the combiner operations.
The logic to match reductions involving multiple combiner operations disabled
until we can properly test it.
Reviewed By: ftynse, bondhugula, nicolasvasilache, pifon2a
Differential Revision: https://reviews.llvm.org/D110303
OpenMP reductions need a neutral element, so we match some known reduction
kinds (integer add/mul/or/and/xor, float add/mul, integer and float min/max) to
define the neutral element and the atomic version when possible to express
using atomicrmw (everything except float mul). The SCF-to-OpenMP pass becomes a
module pass because it now needs to introduce new symbols for reduction
declarations in the module.
Reviewed By: chelini
Differential Revision: https://reviews.llvm.org/D107549
Presently, the lowering of nested scf.parallel loops to OpenMP creates one omp.parallel region, with two (nested) OpenMP worksharing loops on the inside. When lowered to LLVM and executed, this results in incorrect results. The reason for this is as follows:
An OpenMP parallel region results in the code being run with whatever number of threads available to OpenMP. Within a parallel region a worksharing loop divides up the total number of requested iterations by the available number of threads, and distributes accordingly. For a single ws loop in a parallel region, this works as intended.
Now consider nested ws loops as follows:
omp.parallel {
A: omp.ws %i = 0...10 {
B: omp.ws %j = 0...10 {
code(%i, %j)
}
}
}
Suppose we ran this on two threads. The first workshare loop would decide to execute iterations 0, 1, 2, 3, 4 on thread 0, and iterations 5, 6, 7, 8, 9 on thread 1. The second workshare loop would decide the same for its iteration. This means thread 0 would execute i \in [0, 5) and j \in [0, 5). Thread 1 would execute i \in [5, 10) and j \in [5, 10). This means that iterations i in [5, 10), j in [0, 5) and i in [0, 5), j in [5, 10) never get executed, which is clearly wrong.
This permits two options for a remedy:
1) Change the semantics of the omp.wsloop to be distinct from that of the OpenMP runtime call or equivalently #pragma omp for. This could then allow some lowering transformation to remedy the aforementioned issue. I don't think this is desirable for an abstraction standpoint.
2) When lowering an scf.parallel always surround the wsloop with a new parallel region (thereby causing the innermost wsloop to use the number of threads available only to it).
This PR implements the latter change.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D108426
This nicely aligns the naming with RewritePatternSet. This type isn't
as widely used, but we keep a using declaration in to help with
downstream consumption of this change.
Differential Revision: https://reviews.llvm.org/D99131
This doesn't change APIs, this just cleans up the many in-tree uses of these
names to use the new preferred names. We'll keep the old names around for a
couple weeks to help transitions.
Differential Revision: https://reviews.llvm.org/D99127
This updates the codebase to pass the context when creating an instance of
OwningRewritePatternList, and starts removing extraneous MLIRContext
parameters. There are many many more to be removed.
Differential Revision: https://reviews.llvm.org/D99028
Given that OpState already implicit converts to Operator*, this seems reasonable.
The alternative would be to add more functions to OpState which forward to Operation.
Reviewed By: rriddle, ftynse
Differential Revision: https://reviews.llvm.org/D92266
Introduce a conversion pass from SCF parallel loops to OpenMP dialect
constructs - parallel region and workshare loop. Loops with reductions are not
supported because the OpenMP dialect cannot model them yet.
The conversion currently targets only one level of parallelism, i.e. only
one top-level `omp.parallel` operation is produced even if there are nested
`scf.parallel` operations that could be mapped to `omp.wsloop`. Nested
parallelism support is left for future work.
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D91982