This is completely unused upstream, and does not really have well defined semantics
on what this is supposed to do/how this fits into the ecosystem. Given that, as part of
splitting up the standard dialect it's best to just remove this behavior, instead of try
to awkwardly fit it somewhere upstream. Downstream users are encouraged to
define their own operations that clearly can define the semantics of this.
This also uncovered several lingering uses of ConstantOp that weren't
updated to use arith::ConstantOp, and worked during conversions because
the constant was removed/converted into something else before
verification.
See https://llvm.discourse.group/t/standard-dialect-the-final-chapter/ for more discussion.
Differential Revision: https://reviews.llvm.org/D118654
This is part of the larger effort to split the standard dialect. This will also allow for pruning some
additional dependencies on Standard (done in a followup).
Differential Revision: https://reviews.llvm.org/D118202
This revision avoids incorrect hoisting of alloca'd buffers across an AutomaticAllocationScope boundary.
In the more general case, we will probably need a ParallelScope-like interface.
Differential Revision: https://reviews.llvm.org/D118768
This reduces the dependencies of the MLIRVector target and makes the dialect consistent with other dialects.
Differential Revision: https://reviews.llvm.org/D118533
OwningRewritePatternList has been deprecated for ~10 months now, we can remove
the leftover using directives at this point.
Differential Revision: https://reviews.llvm.org/D118287
This is part of splitting up the standard dialect. The move makes sense anyways,
given that the memref dialect already holds memref.atomic_rmw which is the non-region
sibling operation of std.generic_atomic_rmw (the relationship is even more clear given
they have nearly the same description % how they represent the inner computation).
Differential Revision: https://reviews.llvm.org/D118209
This has been a major TODO for a very long time, and is necessary for establishing a proper
dialect-free dependency layering for the Transforms library. Code was moved to effectively
two main locations:
* Affine/
There was quite a bit of affine dialect related code in Transforms/ do to historical reasons
(of a time way into MLIR's past). The following headers were moved to:
Transforms/LoopFusionUtils.h -> Dialect/Affine/LoopFusionUtils.h
Transforms/LoopUtils.h -> Dialect/Affine/LoopUtils.h
Transforms/Utils.h -> Dialect/Affine/Utils.h
The following transforms were also moved:
AffineLoopFusion, AffinePipelineDataTransfer, LoopCoalescing
* SCF/
Only one SCF pass was in Transforms/ (likely accidentally placed here): ParallelLoopCollapsing
The SCF specific utilities in LoopUtils have been moved to SCF/Utils.h
* Misc:
mlir::moveLoopInvariantCode was also moved to LoopLikeInterface.h given
that it is a simple utility defined in terms of LoopLikeOpInterface.
Differential Revision: https://reviews.llvm.org/D117848
The current lowering from GPU to NVVM does
not correctly handle the following cases when
lowering the gpu shuffle op.
1. When the active width is set to 32 (all lanes),
then the current approach computes (1 << 32) -1 which
results in poison values in the LLVM IR. We fix this by
defining the active mask as (-1) >> (32 - width).
2. In the case of shuffle up, the computation of the third
operand c has to be different from the other 3 modes due to
the op definition in the ISA reference.
(https://docs.nvidia.com/cuda/parallel-thread-execution/index.html)
Specifically, the predicate value is computed as j >= maxLane
for up and j <= maxLane for all other modes. We fix this by
computing maskAndClamp as 32 - width for this mode.
TEST: We modify the existing test and add more checks for the up mode.
Reviewed By: ThomasRaoux
Differential Revision: https://reviews.llvm.org/D118086
Adding a similar decomposition for exponential minus one to the SPIRV
backends along with the necessary tests.
Reviewed By: antiagainst
Differential Revision: https://reviews.llvm.org/D118081
BlockArguments gained the ability to have locations attached a while ago, but they
have always been optional. This goes against the core tenant of MLIR where location
information is a requirement, so this commit updates the API to require locations.
Fixes#53279
Differential Revision: https://reviews.llvm.org/D117633
This commit refactors the FunctionLike trait into an interface (FunctionOpInterface).
FunctionLike as it is today is already a pseudo-interface, with many users checking the
presence of the trait and then manually into functionality implemented in the
function_like_impl namespace. By transitioning to an interface, these accesses are much
cleaner (ideally with no direct calls to the impl namespace outside of the implementation
of the derived function operations, e.g. for parsing/printing utilities).
I've tried to maintain as much compatability with the current state as possible, while
also trying to clean up as much of the cruft as possible. The general migration plan for
current users of FunctionLike is as follows:
* function_like_impl -> function_interface_impl
Realistically most user calls should remove references to functions within this namespace
outside of a vary narrow set (e.g. parsing/printing utilities). Calls to the attribute name
accessors should be migrated to the `FunctionOpInterface::` equivalent, most everything
else should be updated to be driven through an instance of the interface.
* OpTrait::FunctionLike -> FunctionOpInterface
`hasTrait` checks will need to be moved to isa, along with the other various Trait vs
Interface API differences.
* populateFunctionLikeTypeConversionPattern -> populateFunctionOpInterfaceTypeConversionPattern
Fixes#52917
Differential Revision: https://reviews.llvm.org/D117272
The only benefit of FunctionPass is that it filters out function
declarations. This isn't enough to justify carrying it around, as we can
simplify filter out declarations when necessary within the pass. We can
also explore with better scheduling primitives to filter out declarations
at the pipeline level in the future.
The definition of FunctionPass is left intact for now to allow time for downstream
users to migrate.
Differential Revision: https://reviews.llvm.org/D117182
The current state of the top level Analysis/ directory is that it contains two libraries;
a generic Analysis library (free from dialect dependencies), and a LoopAnalysis library
that contains various analysis utilities that originated from Affine loop transformations.
This commit moves the LoopAnalysis to the more appropriate home of `Dialect/Affine/Analysis/`,
given the use and intention of the majority of the code within it. After the move, if there
are generic utilities that would fit better in the top-level Analysis/ directory, we can move
them.
Differential Revision: https://reviews.llvm.org/D117351
Coroutine lowering always takes the natural alignment when spilling to
the frame (issue #53148) so using AVX2 or AVX512 in a coroutine doesn't
work. Always overalign to 64 bytes to avoid this issue until we have a
better solution.
Differential Revision: https://reviews.llvm.org/D117501
Adding the optional decompositions have been verified to improve memory
usage on common models. Added the decomposition to the default tosa to linalg
passes.
Reviewed By: NatashaKnk
Differential Revision: https://reviews.llvm.org/D117175
Enable ReassociatingReshapeOpConversion with "non-identity" layouts.
This removes an early-return in this function, which seems unnecessary and is
preventing some memref.collapse_shape from converting to LLVM (see included lit test).
It seems unnecessary because the return message says "only empty layout map is supported"
but there actually is code in this function to deal with non-empty layout maps. Maybe
it refers to an earlier state of implementation and is just out of date?
Though, there is another concern about this early return: the condition that it actually
checks, `{src,dst}MemrefType.getLayout().isIdentity()`, is not quite the same as what the
return message says, "only empty layout map is supported". Stepping through this
`getLayout().isIdentity()` code in GDB, I found that it evaluates to `.getAffineMap().isIdentity()`
which does (AffineMap.cpp:271):
```
if (getNumDims() != getNumResults())
return false;
```
This seems that it would always return false for memrefs of rank greater than 1 ?
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D114808
Dynamic batch for rescale, gather, max_pool, avg_pool, conv2D and depthwise_conv2D. Split helper functions into a separate header file.
Reviewed By: rsuderman
Differential Revision: https://reviews.llvm.org/D117031
ShapedType was created in a time before interfaces, and is one of the earliest
type base classes in the ecosystem. This commit refactors ShapedType into
an interface, which is what it would have been if interfaces had existed at that
time. The API of ShapedType and it's derived classes are essentially untouched
by this refactor, with the exception being the API surrounding kDynamicIndex
(which requires a sole home).
For now, the API of ShapedType and its name have been kept as consistent to
the current state of the world as possible (to help with potential migration churn,
among other reasons). Moving forward though, we should look into potentially
restructuring its API and possible its name as well (it should really have "Interface"
at the end like other interfaces at the very least).
One other potentially interesting note is that I've attached the ShapedType::Trait
to TensorType/BaseMemRefType to act as mixins for the ShapedType API. This
is kind of weird, but allows for sharing the same API (i.e. preventing API loss from
the transition from base class -> Interface). This inheritance doesn't affect any
of the derived classes, it is just for API mixin.
Differential Revision: https://reviews.llvm.org/D116962
Apply scale may encounter scalar, tensor, or vector operations. Expand the
lowering so that it can lower arbitrary of container types.
Reviewed By: NatashaKnk
Differential Revision: https://reviews.llvm.org/D117080
This method simply forwards to populateFunctionLikeTypeConversionPattern,
which is more general. This also helps to remove special treatment of FuncOp from
DialectConversion.
Differential Revision: https://reviews.llvm.org/D116624
Moved all TOSA decomposition patterns so that they can be optionally populated
and used by external rewrites. This avoids decomposing TOSa operations when
backends may benefit from the non-decomposed version.
Reviewed By: rsuderman, mehdi_amini
Differential Revision: https://reviews.llvm.org/D116526
In LLVM IR, the GEP indices that correspond to structures are required to be
i32 constants. MLIR models constants as just values defined by special
operations, and there is no verification that it is the case for structure
indices in GEP. Furthermore, some common transformations such as control flow
simplification may lead to the operands becoming non-constant. Make it possible
to directly supply constant values to LLVM GEPOp to guarantee they remain
constant until the translation to LLVM IR. This is not yet a requirement and
the verifier is not modified, this will be introduced separately.
Reviewed By: wsmoses
Differential Revision: https://reviews.llvm.org/D116757
Each attribute has two accessor: one suffixed with `Attr` which returns the attribute itself
and one without the suffix which unwrap the attribute.
For example for a StringAttr attribute with a field named `kind`, we'll generate:
StringAttr getKindAttr();
StringRef getKind();
Differential Revision: https://reviews.llvm.org/D116466