Commit Graph

32 Commits

Author SHA1 Message Date
David Blaikie 615f63e149 Revert "[FastISel] Flush local value map on ever instruction" and dependent patches
This reverts commit cf1c774d6a.

This change caused several regressions in the gdb test suite - at least
a sample of which was due to line zero instructions making breakpoints
un-lined. I think they're worth investigating/understanding more (&
possibly addressing) before moving forward with this change.

Revert "[FastISel] NFC: Clean up unnecessary bookkeeping"
This reverts commit 3fd39d3694.

Revert "[FastISel] NFC: Remove obsolete -fast-isel-sink-local-values option"
This reverts commit a474657e30.

Revert "Remove static function unused after cf1c774."
This reverts commit dc35368ccf.

Revert "[lldb] Fix TestThreadStepOut.py after "Flush local value map on every instruction""
This reverts commit 53a14a47ee.
2020-12-01 14:26:23 -08:00
Paul Robinson a474657e30 [FastISel] NFC: Remove obsolete -fast-isel-sink-local-values option
This option is not used for anything after #dc35368 (D91734).
2020-11-30 10:55:49 -08:00
Paul Robinson cf1c774d6a [FastISel] Flush local value map on ever instruction
Local values are constants or addresses that can't be folded into
the instruction that uses them. FastISel materializes these in a
"local value" area that always dominates the current insertion
point, to try to avoid materializing these values more than once
(per block).

https://reviews.llvm.org/D43093 added code to sink these local
value instructions to their first use, which has two beneficial
effects. One, it is likely to avoid some unnecessary spills and
reloads; two, it allows us to attach the debug location of the
user to the local value instruction. The latter effect can
improve the debugging experience for debuggers with a "set next
statement" feature, such as the Visual Studio debugger and PS4
debugger, because instructions to set up constants for a given
statement will be associated with the appropriate source line.

There are also some constants (primarily addresses) that could be
produced by no-op casts or GEP instructions; the main difference
from "local value" instructions is that these are values from
separate IR instructions, and therefore could have multiple users
across multiple basic blocks. D43093 avoided sinking these, even
though they were emitted to the same "local value" area as the
other instructions. The patch comment for D43093 states:

  Local values may also be used by no-op casts, which adds the
  register to the RegFixups table. Without reversing the RegFixups
  map direction, we don't have enough information to sink these
  instructions.

This patch undoes most of D43093, and instead flushes the local
value map after(*) every IR instruction, using that instruction's
debug location. This avoids sometimes incorrect locations used
previously, and emits instructions in a more natural order.

This does mean materialized values are not re-used across IR
instruction boundaries; however, only about 5% of those values
were reused in an experimental self-build of clang.

(*) Actually, just prior to the next instruction. It seems like
it would be cleaner the other way, but I was having trouble
getting that to work.

Differential Revision: https://reviews.llvm.org/D91734
2020-11-25 13:05:00 -05:00
Paul Robinson 920befb337 [FastISel] Reduce spills around mem-intrinsic calls
FastISel generates instructions to materialize "local values" at the
top of a block, in the hope that these values could be reused within
the block.  To reduce spills and restores, FastISel treats calls as
sub-block boundaries, flushing the "local value map" at each call.

This patch treats the mem* intrinsics as if they were calls, because
at O0 generally they are calls.  Eliminating these spills/restores is
actually better for debugging (especially a "continue at this line"
command), code size, stack frame size, and maybe even performance.

Differential Revision: https://reviews.llvm.org/D90877
2020-11-09 09:45:14 -08:00
Florian Hahn 8e3f59b45a [AArch64] Add option to enable/disable load-store renaming.
This patch adds a new option to enable/disable register renaming in the
load-store optimizer. Defaults to disabled, as there is a potential
mis-compile caused by this.
2020-01-27 15:15:50 -08:00
Florian Hahn 17554b8961 [AArch64] Teach Load/Store optimizier to rename store operands for pairing.
In some cases, we can rename a store operand, in order to enable pairing
of stores.  For store pairs, that cannot be merged because the first
tored register is defined in between the second store, we try to find
suitable rename register.

First, we check if we can rename the given register:

1. The first store register must be killed at the store, which means we
   do not have to rename instructions after the first store.
2. We scan backwards from the first store, to find the definition of the
   stored register and check all uses in between are renamable. Along
   they way, we collect the minimal register classes of the uses for
   overlapping (sub/super)registers.

Second, we try to find an available register from the minimal physical
register class of the original register. A suitable register must not be

1. defined before FirstMI
2. between the previous definition of the register to rename
3. a callee saved register.

We use KILL flags to clear defined registers while scanning from the
beginning to the end of the block.

This triggers quite often, here are the top changes for MultiSource,
SPEC2000, SPEC2006 compiled with -O3 for iOS:

Metric: aarch64-ldst-opt.NumPairCreated

Program                                        base     patch    diff
 test-suite...nch/fourinarow/fourinarow.test     2.00    39.00   1850.0%
 test-suite...s/ASC_Sequoia/IRSmk/IRSmk.test    46.00    80.00   73.9%
 test-suite...chmarks/Olden/power/power.test    70.00    96.00   37.1%
 test-suite...cations/hexxagon/hexxagon.test    29.00    39.00   34.5%
 test-suite...nchmarks/McCat/05-eks/eks.test   100.00   132.00   32.0%
 test-suite.../Trimaran/enc-rc4/enc-rc4.test    46.00    59.00   28.3%
 test-suite...T2006/473.astar/473.astar.test   160.00   200.00   25.0%
 test-suite.../Trimaran/enc-md5/enc-md5.test     8.00    10.00   25.0%
 test-suite...telecomm-gsm/telecomm-gsm.test   113.00   139.00   23.0%
 test-suite...ediabench/gsm/toast/toast.test   113.00   139.00   23.0%
 test-suite...Source/Benchmarks/sim/sim.test    91.00   111.00   22.0%
 test-suite...C/CFP2000/179.art/179.art.test    41.00    49.00   19.5%
 test-suite...peg2/mpeg2dec/mpeg2decode.test   245.00   279.00   13.9%
 test-suite...marks/Olden/health/health.test    16.00    18.00   12.5%
 test-suite...ks/Prolangs-C/cdecl/cdecl.test    90.00   101.00   12.2%
 test-suite...fice-ispell/office-ispell.test    91.00   100.00    9.9%
 test-suite...oxyApps-C/miniGMG/miniGMG.test   430.00   465.00    8.1%
 test-suite...lowfish/security-blowfish.test    39.00    42.00    7.7%
 test-suite.../Applications/spiff/spiff.test    42.00    45.00    7.1%
 test-suite...arks/mafft/pairlocalalign.test   2473.00  2646.00   7.0%
 test-suite.../VersaBench/ecbdes/ecbdes.test    29.00    31.00    6.9%
 test-suite...nch/beamformer/beamformer.test   220.00   235.00    6.8%
 test-suite...CFP2000/177.mesa/177.mesa.test   2110.00  2252.00   6.7%
 test-suite...ve-susan/automotive-susan.test   109.00   116.00    6.4%
 test-suite...s-C/unix-smail/unix-smail.test    65.00    69.00    6.2%
 test-suite...CI_Purple/SMG2000/smg2000.test   1194.00  1265.00   5.9%
 test-suite.../Benchmarks/nbench/nbench.test   472.00   500.00    5.9%
 test-suite...oxyApps-C/miniAMR/miniAMR.test   248.00   262.00    5.6%
 test-suite...quoia/CrystalMk/CrystalMk.test    18.00    19.00    5.6%
 test-suite...rks/tramp3d-v4/tramp3d-v4.test   7331.00  7710.00   5.2%
 test-suite.../Benchmarks/Bullet/bullet.test   5651.00  5938.00   5.1%
 test-suite...ternal/HMMER/hmmcalibrate.test   750.00   788.00    5.1%
 test-suite...T2006/456.hmmer/456.hmmer.test   764.00   802.00    5.0%
 test-suite...ications/JM/ldecod/ldecod.test   1028.00  1079.00   5.0%
 test-suite...CFP2006/444.namd/444.namd.test   1368.00  1434.00   4.8%
 test-suite...marks/7zip/7zip-benchmark.test   4471.00  4685.00   4.8%
 test-suite...6/464.h264ref/464.h264ref.test   3122.00  3271.00   4.8%
 test-suite...pplications/oggenc/oggenc.test   1497.00  1565.00   4.5%
 test-suite...T2000/300.twolf/300.twolf.test   742.00   774.00    4.3%
 test-suite.../Prolangs-C/loader/loader.test    24.00    25.00    4.2%
 test-suite...0.perlbench/400.perlbench.test   1983.00  2058.00   3.8%
 test-suite...ications/JM/lencod/lencod.test   4612.00  4785.00   3.8%
 test-suite...yApps-C++/PENNANT/PENNANT.test   995.00   1032.00   3.7%
 test-suite...arks/VersaBench/dbms/dbms.test    54.00    56.00    3.7%

Reviewers: efriedma, thegameg, samparker, dmgreen, paquette, evandro

Reviewed By: paquette

Differential Revision: https://reviews.llvm.org/D70450
2019-12-11 13:50:11 +00:00
Eli Friedman 92d0d13366 [AArch64] Prefer "mov" over "orr" to materialize constants.
This is generally more readable due to the way the assembler aliases
work.

(This causes a lot of test changes, but it's not really as scary as it
looks at first glance; it's just mechanically changing a bunch of checks
for orr to check for mov instead.)

Differential Revision: https://reviews.llvm.org/D59720

llvm-svn: 356954
2019-03-25 21:25:28 +00:00
Francis Visoiu Mistrih b7cef81fd3 Replace "no-frame-pointer-*" function attributes with "frame-pointer"
Part of the effort to refactoring frame pointer code generation. We used
to use two function attributes "no-frame-pointer-elim" and
"no-frame-pointer-elim-non-leaf" to represent three kinds of frame
pointer usage: (all) frames use frame pointer, (non-leaf) frames use
frame pointer, (none) frame use frame pointer. This CL makes the idea
explicit by using only one enum function attribute "frame-pointer"

Option "-frame-pointer=" replaces "-disable-fp-elim" for tools such as
llc.

"no-frame-pointer-elim" and "no-frame-pointer-elim-non-leaf" are still
supported for easy migration to "frame-pointer".

tests are mostly updated with

// replace command line args ‘-disable-fp-elim=false’ with ‘-frame-pointer=none’
grep -iIrnl '\-disable-fp-elim=false' * | xargs sed -i '' -e "s/-disable-fp-elim=false/-frame-pointer=none/g"

// replace command line args ‘-disable-fp-elim’ with ‘-frame-pointer=all’
grep -iIrnl '\-disable-fp-elim' * | xargs sed -i '' -e "s/-disable-fp-elim/-frame-pointer=all/g"

Patch by Yuanfang Chen (tabloid.adroit)!

Differential Revision: https://reviews.llvm.org/D56351

llvm-svn: 351049
2019-01-14 10:55:55 +00:00
Reid Kleckner 0828699488 [FastISel] Disable local value sinking by default
This is causing compilation timeouts on code with long sequences of
local values and calls (i.e. foo(1); foo(2); foo(3); ...).  It turns out
that code coverage instrumentation is a great way to create sequences
like this, which how our users ran into the issue in practice.

Intel has a tool that detects these kinds of non-linear compile time
issues, and Andy Kaylor reported it as PR37010.

The current sinking code scans the whole basic block once per local
value sink, which happens before emitting each call. In theory, local
values should only be introduced to be used by instructions between the
current flush point and the last flush point, so we should only need to
scan those instructions.

llvm-svn: 329822
2018-04-11 16:03:07 +00:00
Reid Kleckner 3a7a2e4a0a [FastISel] Sink local value materializations to first use
Summary:
Local values are constants, global addresses, and stack addresses that
can't be folded into the instruction that uses them. For example, when
storing the address of a global variable into memory, we need to
materialize that address into a register.

FastISel doesn't want to materialize any given local value more than
once, so it generates all local value materialization code at
EmitStartPt, which always dominates the current insertion point. This
allows it to maintain a map of local value registers, and it knows that
the local value area will always dominate the current insertion point.

The downside is that local value instructions are always emitted without
a source location. This is done to prevent jumpy line tables, but it
means that the local value area will be considered part of the previous
statement. Consider this C code:
  call1();      // line 1
  ++global;     // line 2
  ++global;     // line 3
  call2(&global, &local); // line 4

Today we end up with assembly and line tables like this:
  .loc 1 1
  callq call1
  leaq global(%rip), %rdi
  leaq local(%rsp), %rsi
  .loc 1 2
  addq $1, global(%rip)
  .loc 1 3
  addq $1, global(%rip)
  .loc 1 4
  callq call2

The LEA instructions in the local value area have no source location and
are treated as being on line 1. Stepping through the code in a debugger
and correlating it with the assembly won't make much sense, because
these materializations are only required for line 4.

This is actually problematic for the VS debugger "set next statement"
feature, which effectively assumes that there are no registers live
across statement boundaries. By sinking the local value code into the
statement and fixing up the source location, we can make that feature
work. This was filed as https://bugs.llvm.org/show_bug.cgi?id=35975 and
https://crbug.com/793819.

This change is obviously not enough to make this feature work reliably
in all cases, but I felt that it was worth doing anyway because it
usually generates smaller, more comprehensible -O0 code. I measured a
0.12% regression in code generation time with LLC on the sqlite3
amalgamation, so I think this is worth doing.

There are some special cases worth calling out in the commit message:
1. local values materialized for phis
2. local values used by no-op casts
3. dead local value code

Local values can be materialized for phis, and this does not show up as
a vreg use in MachineRegisterInfo. In this case, if there are no other
uses, this patch sinks the value to the first terminator, EH label, or
the end of the BB if nothing else exists.

Local values may also be used by no-op casts, which adds the register to
the RegFixups table. Without reversing the RegFixups map direction, we
don't have enough information to sink these instructions.

Lastly, if the local value register has no other uses, we can delete it.
This comes up when fastisel tries two instruction selection approaches
and the first materializes the value but fails and the second succeeds
without using the local value.

Reviewers: aprantl, dblaikie, qcolombet, MatzeB, vsk, echristo

Subscribers: dotdash, chandlerc, hans, sdardis, amccarth, javed.absar, zturner, llvm-commits, hiraditya

Differential Revision: https://reviews.llvm.org/D43093

llvm-svn: 327581
2018-03-14 21:54:21 +00:00
Daniel Neilson 1e68724d24 Remove alignment argument from memcpy/memmove/memset in favour of alignment attributes (Step 1)
Summary:
 This is a resurrection of work first proposed and discussed in Aug 2015:
   http://lists.llvm.org/pipermail/llvm-dev/2015-August/089384.html
and initially landed (but then backed out) in Nov 2015:
   http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html

 The @llvm.memcpy/memmove/memset intrinsics currently have an explicit argument
which is required to be a constant integer. It represents the alignment of the
dest (and source), and so must be the minimum of the actual alignment of the
two.

 This change is the first in a series that allows source and dest to each
have their own alignments by using the alignment attribute on their arguments.

 In this change we:
1) Remove the alignment argument.
2) Add alignment attributes to the source & dest arguments. We, temporarily,
   require that the alignments for source & dest be equal.

 For example, code which used to read:
  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dest, i8* %src, i32 100, i32 4, i1 false)
will now read
  call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 4 %dest, i8* align 4 %src, i32 100, i1 false)

 Downstream users may have to update their lit tests that check for
@llvm.memcpy/memmove/memset call/declaration patterns. The following extended sed script
may help with updating the majority of your tests, but it does not catch all possible
patterns so some manual checking and updating will be required.

s~declare void @llvm\.mem(set|cpy|move)\.p([^(]*)\((.*), i32, i1\)~declare void @llvm.mem\1.p\2(\3, i1)~g
s~call void @llvm\.memset\.p([^(]*)i8\(i8([^*]*)\* (.*), i8 (.*), i8 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i8(i8\2* \3, i8 \4, i8 \5, i1 \6)~g
s~call void @llvm\.memset\.p([^(]*)i16\(i8([^*]*)\* (.*), i8 (.*), i16 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i16(i8\2* \3, i8 \4, i16 \5, i1 \6)~g
s~call void @llvm\.memset\.p([^(]*)i32\(i8([^*]*)\* (.*), i8 (.*), i32 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i32(i8\2* \3, i8 \4, i32 \5, i1 \6)~g
s~call void @llvm\.memset\.p([^(]*)i64\(i8([^*]*)\* (.*), i8 (.*), i64 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i64(i8\2* \3, i8 \4, i64 \5, i1 \6)~g
s~call void @llvm\.memset\.p([^(]*)i128\(i8([^*]*)\* (.*), i8 (.*), i128 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i128(i8\2* \3, i8 \4, i128 \5, i1 \6)~g
s~call void @llvm\.memset\.p([^(]*)i8\(i8([^*]*)\* (.*), i8 (.*), i8 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i8(i8\2* align \6 \3, i8 \4, i8 \5, i1 \7)~g
s~call void @llvm\.memset\.p([^(]*)i16\(i8([^*]*)\* (.*), i8 (.*), i16 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i16(i8\2* align \6 \3, i8 \4, i16 \5, i1 \7)~g
s~call void @llvm\.memset\.p([^(]*)i32\(i8([^*]*)\* (.*), i8 (.*), i32 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i32(i8\2* align \6 \3, i8 \4, i32 \5, i1 \7)~g
s~call void @llvm\.memset\.p([^(]*)i64\(i8([^*]*)\* (.*), i8 (.*), i64 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i64(i8\2* align \6 \3, i8 \4, i64 \5, i1 \7)~g
s~call void @llvm\.memset\.p([^(]*)i128\(i8([^*]*)\* (.*), i8 (.*), i128 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i128(i8\2* align \6 \3, i8 \4, i128 \5, i1 \7)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i8\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i8 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i8(i8\3* \4, i8\5* \6, i8 \7, i1 \8)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i16\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i16 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i16(i8\3* \4, i8\5* \6, i16 \7, i1 \8)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i32\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i32 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i32(i8\3* \4, i8\5* \6, i32 \7, i1 \8)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i64\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i64 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i64(i8\3* \4, i8\5* \6, i64 \7, i1 \8)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i128\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i128 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i128(i8\3* \4, i8\5* \6, i128 \7, i1 \8)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i8\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i8 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i8(i8\3* align \8 \4, i8\5* align \8 \6, i8 \7, i1 \9)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i16\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i16 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i16(i8\3* align \8 \4, i8\5* align \8 \6, i16 \7, i1 \9)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i32\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i32 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i32(i8\3* align \8 \4, i8\5* align \8 \6, i32 \7, i1 \9)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i64\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i64 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i64(i8\3* align \8 \4, i8\5* align \8 \6, i64 \7, i1 \9)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i128\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i128 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i128(i8\3* align \8 \4, i8\5* align \8 \6, i128 \7, i1 \9)~g

 The remaining changes in the series will:
Step 2) Expand the IRBuilder API to allow creation of memcpy/memmove with differing
   source and dest alignments.
Step 3) Update Clang to use the new IRBuilder API.
Step 4) Update Polly to use the new IRBuilder API.
Step 5) Update LLVM passes that create memcpy/memmove calls to use the new IRBuilder API,
        and those that use use MemIntrinsicInst::[get|set]Alignment() to use
        getDestAlignment() and getSourceAlignment() instead.
Step 6) Remove the single-alignment IRBuilder API for memcpy/memmove, and the
        MemIntrinsicInst::[get|set]Alignment() methods.

Reviewers: pete, hfinkel, lhames, reames, bollu

Reviewed By: reames

Subscribers: niosHD, reames, jholewinski, qcolombet, jfb, sanjoy, arsenm, dschuff, dylanmckay, mehdi_amini, sdardis, nemanjai, david2050, nhaehnle, javed.absar, sbc100, jgravelle-google, eraman, aheejin, kbarton, JDevlieghere, asb, rbar, johnrusso, simoncook, jordy.potman.lists, apazos, sabuasal, llvm-commits

Differential Revision: https://reviews.llvm.org/D41675

llvm-svn: 322965
2018-01-19 17:13:12 +00:00
Amara Emerson 854d10d10b [AArch64][GlobalISel] Enable GlobalISel at -O0 by default
Tests updated to explicitly use fast-isel at -O0 instead of implicitly.

This change also allows an explicit -fast-isel option to override an
implicitly enabled global-isel. Otherwise -fast-isel would have no effect at -O0.

Differential Revision: https://reviews.llvm.org/D41362

llvm-svn: 321655
2018-01-02 16:30:47 +00:00
Nirav Dave d839749ae8 [DAG] Improve Aliasing of operations to static alloca
Re-recommiting after landing DAG extension-crash fix.

Recommiting after adding check to avoid miscomputing alias information
on addresses of the same base but different subindices.

Memory accesses offset from frame indices may alias, e.g., we
may merge write from function arguments passed on the stack when they
are contiguous. As a result, when checking aliasing, we consider the
underlying frame index's offset from the stack pointer.

Static allocs are realized as stack objects in SelectionDAG, but its
offset is not set until post-DAG causing DAGCombiner's alias check to
consider access to static allocas to frequently alias. Modify isAlias
to consider access between static allocas and access from other frame
objects to be considered aliasing.

Many test changes are included here. Most are fixes for tests which
indirectly relied on our aliasing ability and needed to be modified to
preserve their original intent.

The remaining tests have minor improvements due to relaxed
ordering. The exception is CodeGen/X86/2011-10-19-widen_vselect.ll
which has a minor degradation dispite though the pre-legalized DAG is
improved.

Reviewers: rnk, mkuper, jonpa, hfinkel, uweigand

Reviewed By: rnk

Subscribers: sdardis, nemanjai, javed.absar, llvm-commits

Differential Revision: https://reviews.llvm.org/D33345

llvm-svn: 308350
2017-07-18 20:06:24 +00:00
Chandler Carruth a15e080b05 Revert r308025 due to uncovering a crash in SelectionDAG. This is filed
with a minimal test case in http://llvm.org/PR33833.

Original commit message:
  Improve Aliasing of operations to static alloca

llvm-svn: 308271
2017-07-18 07:53:47 +00:00
Nirav Dave a8f63af9d1 Improve Aliasing of operations to static alloca
Recommiting after adding check to avoid miscomputing alias information
on addresses of the same base but different subindices.

Memory accesses offset from frame indices may alias, e.g., we
may merge write from function arguments passed on the stack when they
are contiguous. As a result, when checking aliasing, we consider the
underlying frame index's offset from the stack pointer.

Static allocs are realized as stack objects in SelectionDAG, but its
offset is not set until post-DAG causing DAGCombiner's alias check to
consider access to static allocas to frequently alias. Modify isAlias
to consider access between static allocas and access from other frame
objects to be considered aliasing.

Many test changes are included here. Most are fixes for tests which
indirectly relied on our aliasing ability and needed to be modified to
preserve their original intent.

The remaining tests have minor improvements due to relaxed
ordering. The exception is CodeGen/X86/2011-10-19-widen_vselect.ll
which has a minor degradation dispite though the pre-legalized DAG is
improved.

Reviewers: rnk, mkuper, jonpa, hfinkel, uweigand

Reviewed By: rnk

Subscribers: sdardis, nemanjai, javed.absar, llvm-commits

Differential Revision: https://reviews.llvm.org/D33345

llvm-svn: 308025
2017-07-14 13:56:21 +00:00
Matthias Braun b38736706e Revert "[DAG] Improve Aliasing of operations to static alloca"
Reverting as it breaks tramp3d-v4 in the llvm test-suite. I added some
comments to https://reviews.llvm.org/D33345 about it.

This reverts commit r307546.

llvm-svn: 307589
2017-07-10 20:51:30 +00:00
Nirav Dave 163e1ad9dc [DAG] Improve Aliasing of operations to static alloca
Memory accesses offset from frame indices may alias, e.g., we
may merge write from function arguments passed on the stack when they
are contiguous. As a result, when checking aliasing, we consider the
underlying frame index's offset from the stack pointer.

Static allocs are realized as stack objects in SelectionDAG, but its
offset is not set until post-DAG causing DAGCombiner's alias check to
consider access to static allocas to frequently alias. Modify isAlias
to consider access between static allocas and access from other frame
objects to be considered aliasing.

Many test changes are included here. Most are fixes for tests which
indirectly relied on our aliasing ability and needed to be modified to
preserve their original intent.

The remaining tests have minor improvements due to relaxed
ordering. The exception is CodeGen/X86/2011-10-19-widen_vselect.ll
which has a minor degradation dispite though the pre-legalized DAG is
improved.

Reviewers: rnk, mkuper, jonpa, hfinkel, uweigand

Reviewed By: rnk

Subscribers: sdardis, nemanjai, javed.absar, llvm-commits

Differential Revision: https://reviews.llvm.org/D33345

llvm-svn: 307546
2017-07-10 15:39:41 +00:00
Simon Pilgrim fc4d4b251d [AARCH64] Enable AARCH64 lit tests on windows dev machines
As discussed on PR27654, this patch fixes the triples of a lot of aarch64 tests and enables lit tests on windows

This will hopefully help stop cases where windows developers break the aarch64 target

Differential Revision: https://reviews.llvm.org/D22191

llvm-svn: 275973
2016-07-19 13:35:11 +00:00
Tim Northover daa1c018b0 AArch64: allow MOV (imm) alias to be printed
The backend has been around for years, it's pretty ridiculous that we can't
even use the preferred form for printing "MOV" aliases. Unfortunately, TableGen
can't handle the complex predicates when printing so it's a bunch of nasty C++.
Oh well.

llvm-svn: 272865
2016-06-16 01:42:25 +00:00
Paul Osmialowski 4f5b3be7f1 add support for -print-imm-hex for AArch64
Most immediates are printed in Aarch64InstPrinter using 'formatImm' macro,
but not all of them.

Implementation contains following rules:

- floating point immediates are always printed as decimal
- signed integer immediates are printed depends on flag settings
  (for negative values 'formatImm' macro prints the value as i.e -0x01
  which may be convenient when imm is an address or offset)
- logical immediates are always printed as hex
- the 64-bit immediate for advSIMD, encoded in "a🅱️c:d:e:f:g:h" is always printed as hex
- the 64-bit immedaite in exception generation instructions like:
  brk, dcps1, dcps2, dcps3, hlt, hvc, smc, svc is always printed as hex
- the rest of immediates is printed depends on availability
  of -print-imm-hex

Signed-off-by: Maciej Gabka <maciej.gabka@arm.com>
Signed-off-by: Paul Osmialowski <pawel.osmialowski@arm.com>

Differential Revision: http://reviews.llvm.org/D16929

llvm-svn: 269446
2016-05-13 18:00:09 +00:00
Geoff Berry a5335647d5 [AArch64] Combine callee-save and local stack SP adjustment instructions.
Summary:
If a function needs to allocate both callee-save stack memory and local
stack memory, we currently decrement/increment the SP in two steps:
first for the callee-save area, and then for the local stack area.  This
changes the code to allocate them both at once at the very beginning/end
of the function.  This has two benefits:

1) there is one fewer sub/add micro-op in the prologue/epilogue

2) the stack adjustment instructions act as a scheduling barrier, so
moving them to the very beginning/end of the function increases post-RA
scheduler's ability to move instructions (that only depend on argument
registers) before any of the callee-save stores

This change can cause an increase in instructions if the original local
stack SP decrement could be folded into the first store to the stack.
This occurs when the first local stack store is to stack offset 0.  In
this case we are trading off one more sub instruction for one fewer sub
micro-op (along with benefits (2) and (3) above).

Reviewers: t.p.northover

Subscribers: aemerson, rengolin, mcrosier, llvm-commits

Differential Revision: http://reviews.llvm.org/D18619

llvm-svn: 268746
2016-05-06 16:34:59 +00:00
Geoff Berry 62c1a1e7c7 [AArch64] Enable non-leaf frame pointer elimination.
Summary:
This change enables frame pointer elimination in non-leaf functions.
The -fomit-frame-pointer option still needs to be used when compiling
via clang (or an equivalent method of not setting the
'no-frame-pointer-elim*' function attributes if generating llvm IR via
some other method) to take advantage of this optimization.

This change should be NFC when compiling via clang without
-fomit-frame-pointer.

Reviewers: t.p.northover

Subscribers: aemerson, rengolin, tberghammer, qcolombet, llvm-commits, danalbert, mcrosier, srhines

Differential Revision: http://reviews.llvm.org/D17730

llvm-svn: 262495
2016-03-02 17:58:31 +00:00
Pete Cooper 67cf9a723b Revert "Change memcpy/memset/memmove to have dest and source alignments."
This reverts commit r253511.

This likely broke the bots in
http://lab.llvm.org:8011/builders/clang-ppc64-elf-linux2/builds/20202
http://bb.pgr.jp/builders/clang-3stage-i686-linux/builds/3787

llvm-svn: 253543
2015-11-19 05:56:52 +00:00
Pete Cooper 72bc23ef02 Change memcpy/memset/memmove to have dest and source alignments.
Note, this was reviewed (and more details are in) http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html

These intrinsics currently have an explicit alignment argument which is
required to be a constant integer.  It represents the alignment of the
source and dest, and so must be the minimum of those.

This change allows source and dest to each have their own alignments
by using the alignment attribute on their arguments.  The alignment
argument itself is removed.

There are a few places in the code for which the code needs to be
checked by an expert as to whether using only src/dest alignment is
safe.  For those places, they currently take the minimum of src/dest
alignments which matches the current behaviour.

For example, code which used to read:
  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dest, i8* %src, i32 500, i32 8, i1 false)
will now read:
  call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 8 %dest, i8* align 8 %src, i32 500, i1 false)

For out of tree owners, I was able to strip alignment from calls using sed by replacing:
  (call.*llvm\.memset.*)i32\ [0-9]*\,\ i1 false\)
with:
  $1i1 false)

and similarly for memmove and memcpy.

I then added back in alignment to test cases which needed it.

A similar commit will be made to clang which actually has many differences in alignment as now
IRBuilder can generate different source/dest alignments on calls.

In IRBuilder itself, a new argument was added.  Instead of calling:
  CreateMemCpy(Dst, Src, getInt64(Size), DstAlign, /* isVolatile */ false)
you now call
  CreateMemCpy(Dst, Src, getInt64(Size), DstAlign, SrcAlign, /* isVolatile */ false)

There is a temporary class (IntegerAlignment) which takes the source alignment and rejects
implicit conversion from bool.  This is to prevent isVolatile here from passing its default
parameter to the source alignment.

Note, changes in future can now be made to codegen.  I didn't change anything here, but this
change should enable better memcpy code sequences.

Reviewed by Hal Finkel.

llvm-svn: 253511
2015-11-18 22:17:24 +00:00
Chad Rosier 11c825f7db [AArch64] Remove an unnecessary restriction on pre-index instructions.
Previously, the index was constrained to the size of the memory operation for
no apparent reason.  This change removes that constraint so that we can form
pre-index instructions with any valid offset.

llvm-svn: 248931
2015-09-30 19:44:40 +00:00
David Blaikie a79ac14fa6 [opaque pointer type] Add textual IR support for explicit type parameter to load instruction
Essentially the same as the GEP change in r230786.

A similar migration script can be used to update test cases, though a few more
test case improvements/changes were required this time around: (r229269-r229278)

import fileinput
import sys
import re

pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)")

for line in sys.stdin:
  sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line))

Reviewers: rafael, dexonsmith, grosser

Differential Revision: http://reviews.llvm.org/D7649

llvm-svn: 230794
2015-02-27 21:17:42 +00:00
David Blaikie 79e6c74981 [opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction
One of several parallel first steps to remove the target type of pointers,
replacing them with a single opaque pointer type.

This adds an explicit type parameter to the gep instruction so that when the
first parameter becomes an opaque pointer type, the type to gep through is
still available to the instructions.

* This doesn't modify gep operators, only instructions (operators will be
  handled separately)

* Textual IR changes only. Bitcode (including upgrade) and changing the
  in-memory representation will be in separate changes.

* geps of vectors are transformed as:
    getelementptr <4 x float*> %x, ...
  ->getelementptr float, <4 x float*> %x, ...
  Then, once the opaque pointer type is introduced, this will ultimately look
  like:
    getelementptr float, <4 x ptr> %x
  with the unambiguous interpretation that it is a vector of pointers to float.

* address spaces remain on the pointer, not the type:
    getelementptr float addrspace(1)* %x
  ->getelementptr float, float addrspace(1)* %x
  Then, eventually:
    getelementptr float, ptr addrspace(1) %x

Importantly, the massive amount of test case churn has been automated by
same crappy python code. I had to manually update a few test cases that
wouldn't fit the script's model (r228970,r229196,r229197,r229198). The
python script just massages stdin and writes the result to stdout, I
then wrapped that in a shell script to handle replacing files, then
using the usual find+xargs to migrate all the files.

update.py:
import fileinput
import sys
import re

ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
normrep = re.compile(       r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")

def conv(match, line):
  if not match:
    return line
  line = match.groups()[0]
  if len(match.groups()[5]) == 0:
    line += match.groups()[2]
  line += match.groups()[3]
  line += ", "
  line += match.groups()[1]
  line += "\n"
  return line

for line in sys.stdin:
  if line.find("getelementptr ") == line.find("getelementptr inbounds"):
    if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("):
      line = conv(re.match(ibrep, line), line)
  elif line.find("getelementptr ") != line.find("getelementptr ("):
    line = conv(re.match(normrep, line), line)
  sys.stdout.write(line)

apply.sh:
for name in "$@"
do
  python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name"
  rm -f "$name.tmp"
done

The actual commands:
From llvm/src:
find test/ -name *.ll | xargs ./apply.sh
From llvm/src/tools/clang:
find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}"
From llvm/src/tools/polly:
find test/ -name *.ll | xargs ./apply.sh

After that, check-all (with llvm, clang, clang-tools-extra, lld,
compiler-rt, and polly all checked out).

The extra 'rm' in the apply.sh script is due to a few files in clang's test
suite using interesting unicode stuff that my python script was throwing
exceptions on. None of those files needed to be migrated, so it seemed
sufficient to ignore those cases.

Reviewers: rafael, dexonsmith, grosser

Differential Revision: http://reviews.llvm.org/D7636

llvm-svn: 230786
2015-02-27 19:29:02 +00:00
Duncan P. N. Exon Smith be7ea19b58 IR: Make metadata typeless in assembly
Now that `Metadata` is typeless, reflect that in the assembly.  These
are the matching assembly changes for the metadata/value split in
r223802.

  - Only use the `metadata` type when referencing metadata from a call
    intrinsic -- i.e., only when it's used as a `Value`.

  - Stop pretending that `ValueAsMetadata` is wrapped in an `MDNode`
    when referencing it from call intrinsics.

So, assembly like this:

    define @foo(i32 %v) {
      call void @llvm.foo(metadata !{i32 %v}, metadata !0)
      call void @llvm.foo(metadata !{i32 7}, metadata !0)
      call void @llvm.foo(metadata !1, metadata !0)
      call void @llvm.foo(metadata !3, metadata !0)
      call void @llvm.foo(metadata !{metadata !3}, metadata !0)
      ret void, !bar !2
    }
    !0 = metadata !{metadata !2}
    !1 = metadata !{i32* @global}
    !2 = metadata !{metadata !3}
    !3 = metadata !{}

turns into this:

    define @foo(i32 %v) {
      call void @llvm.foo(metadata i32 %v, metadata !0)
      call void @llvm.foo(metadata i32 7, metadata !0)
      call void @llvm.foo(metadata i32* @global, metadata !0)
      call void @llvm.foo(metadata !3, metadata !0)
      call void @llvm.foo(metadata !{!3}, metadata !0)
      ret void, !bar !2
    }
    !0 = !{!2}
    !1 = !{i32* @global}
    !2 = !{!3}
    !3 = !{}

I wrote an upgrade script that handled almost all of the tests in llvm
and many of the tests in cfe (even handling many `CHECK` lines).  I've
attached it (or will attach it in a moment if you're speedy) to PR21532
to help everyone update their out-of-tree testcases.

This is part of PR21532.

llvm-svn: 224257
2014-12-15 19:07:53 +00:00
Akira Hatanaka b74db09c97 [AArch64, fast-isel] Fall back to SelectionDAG to select tail calls.
Certain functions such as objc_autoreleaseReturnValue have to be called as
tail-calls even at -O0. Since normal fast-isel doesn't emit calls as tail calls,
we have to fall back to SelectionDAG to select calls that are marked as tail.

<rdar://problem/17991614>

llvm-svn: 215600
2014-08-13 23:23:58 +00:00
Juergen Ributzka 2581fa505f [FastIsel][AArch64] Add support for the FastLowerCall and FastLowerIntrinsicCall target-hooks.
This commit modifies the existing call lowering functions to be used as the
FastLowerCall and FastLowerIntrinsicCall target-hooks instead.

This enables patchpoint intrinsic lowering for AArch64.

This fixes <rdar://problem/17733076>

llvm-svn: 213704
2014-07-22 23:14:58 +00:00
Juergen Ributzka 88f6faf1f4 [AArch64] Use CHECK-LABEL in ARM64 ABI unit tests.
llvm-svn: 213703
2014-07-22 23:14:54 +00:00
Tim Northover 3b0846e8f7 AArch64/ARM64: move ARM64 into AArch64's place
This commit starts with a "git mv ARM64 AArch64" and continues out
from there, renaming the C++ classes, intrinsics, and other
target-local objects for consistency.

"ARM64" test directories are also moved, and tests that began their
life in ARM64 use an arm64 triple, those from AArch64 use an aarch64
triple. Both should be equivalent though.

This finishes the AArch64 merge, and everyone should feel free to
continue committing as normal now.

llvm-svn: 209577
2014-05-24 12:50:23 +00:00