Also test for the process to be stopped when many SBValue API calls are made to make sure it is safe to evaluate values, children of values and much more.
llvm-svn: 154160
either @dsym_test or @dwarf_test to be executed during the testsuite run. There are still lots of
Test*.py files which have not been decorated with the new decorator.
An example:
# From TestMyFirstWatchpoint.py ->
class HelloWatchpointTestCase(TestBase):
mydir = os.path.join("functionalities", "watchpoint", "hello_watchpoint")
@dsym_test
def test_hello_watchpoint_with_dsym_using_watchpoint_set(self):
"""Test a simple sequence of watchpoint creation and watchpoint hit."""
self.buildDsym(dictionary=self.d)
self.setTearDownCleanup(dictionary=self.d)
self.hello_watchpoint()
@dwarf_test
def test_hello_watchpoint_with_dwarf_using_watchpoint_set(self):
"""Test a simple sequence of watchpoint creation and watchpoint hit."""
self.buildDwarf(dictionary=self.d)
self.setTearDownCleanup(dictionary=self.d)
self.hello_watchpoint()
# Invocation ->
[17:50:14] johnny:/Volumes/data/lldb/svn/ToT/test $ ./dotest.py -N dsym -v -p TestMyFirstWatchpoint.py
LLDB build dir: /Volumes/data/lldb/svn/ToT/build/Debug
LLDB-137
Path: /Volumes/data/lldb/svn/ToT
URL: https://johnny@llvm.org/svn/llvm-project/lldb/trunk
Repository Root: https://johnny@llvm.org/svn/llvm-project
Repository UUID: 91177308-0d34-0410-b5e6-96231b3b80d8
Revision: 154133
Node Kind: directory
Schedule: normal
Last Changed Author: gclayton
Last Changed Rev: 154109
Last Changed Date: 2012-04-05 10:43:02 -0700 (Thu, 05 Apr 2012)
Session logs for test failures/errors/unexpected successes will go into directory '2012-04-05-17_50_49'
Command invoked: python ./dotest.py -N dsym -v -p TestMyFirstWatchpoint.py
compilers=['clang']
Configuration: arch=x86_64 compiler=clang
----------------------------------------------------------------------
Collected 2 tests
1: test_hello_watchpoint_with_dsym_using_watchpoint_set (TestMyFirstWatchpoint.HelloWatchpointTestCase)
Test a simple sequence of watchpoint creation and watchpoint hit. ... skipped 'dsym tests'
2: test_hello_watchpoint_with_dwarf_using_watchpoint_set (TestMyFirstWatchpoint.HelloWatchpointTestCase)
Test a simple sequence of watchpoint creation and watchpoint hit. ... ok
----------------------------------------------------------------------
Ran 2 tests in 1.138s
OK (skipped=1)
Session logs for test failures/errors/unexpected successes can be found in directory '2012-04-05-17_50_49'
[17:50:50] johnny:/Volumes/data/lldb/svn/ToT/test $
llvm-svn: 154154
Right now it only works on Mac OS X, but other
platforms would just need to add their own
implementation of AddLLDBToSysPathOn*().
The stress-tester has two modes:
Used with --bytes N --random, the stress-tester
generates random instructions of length N and
runs them through the disassembler. This is
suitable for architectures like Intel where it
is combinatorially infeasible to run through the
entire space of possible instructions.
Used with --bytes N and no arguments (or --start
S --stride T), the stress-tester tests the
disassembler with a monotonically increasing
sequence of instructions.
The --start and --stride arguments are intended
for use in multiprocessing environments. Give
each core an ID from 0 .. T-1, pass the ID in as
the --start, and use T as the stride, and you
can launch one copy of the stress-tester on each
core you have available.
llvm-svn: 154143
This abstracts read/write locks on the current host system. It is currently backed by pthread_rwlock_t objects so it should work on all unix systems.
We also need a way to control multi-threaded access to the process through the public API when it is running. For example it isn't a good idea to try and get stack frames while the process is running. To implement this, the lldb_private::Process class now contains a ReadWriteLock member variable named m_run_lock which is used to control the public process state. The public process state represents the state of the process as the client knows it. The private is used to control the actual current process state. So the public state of the process can be stopped, yet the private state can be running when evaluating an expression for example.
Adding the read/write lock where readers are clients that want the process to stay stopped, and writers are clients that run the process, allows us to accurately control multi-threaded access to the process.
Switched the SBThread and SBFrame over to us shared pointers to the ExecutionContextRef class instead of making their own class to track this. This fixed an issue with assigning on SBFrame to another and will also centralize the code that tracks weak references to execution context objects into one location.
llvm-svn: 154099
They are truncated when generating the version
numbers seen in the headers, so for example
lldb-100.1 would have #define LLDB_VERSION=100
llvm-svn: 154074
correctly if the setter/getter were not present
in the debug information. The fixes are as follows:
- We not only look for the method by its full name,
but also look for automatically-generated methods
when searching for a selector in an Objective-C
interface. This is necessary to find accessors.
- Extract the getter and setter name from the
DW_TAG_APPLE_Property declaration in the DWARF
if they are present; generate them if not.
llvm-svn: 154067
Found an issue where we might still have shared pointer references to lldb_private::Thread objects where the object itself is not valid and has been removed from the Process. When a thread is removed from a process, it will call Thread::DestroyThread() which well set a boolean member variable which is exposed now via:
bool
Thread::IsValid() const;
We then check the thread validity before handing out a shared pointer.
llvm-svn: 154048
Fixed an issue where there were more than one way to get a CompileUnitSP created when using SymbolFileDWARF with SymbolFileDWARFDebugMap. This led to an assertion that would fire under certain conditions. Now there is only one way to create the compile unit and it will "do the right thing".
llvm-svn: 153908
(lldb) log enable --verbose lldb completion
This will print out backtraces for all type completion calls which will help us verify that we don't ever complete a type when we don't need to.
llvm-svn: 153787
ValueObject, and make sure that ValueObjects that
have null type names (because they have null types)
also have null qualified type names. This avoids
some potential crashes if
ValueObject::GetQualifiedTypeName tries to get the
name of their type by calling GetClangTypeImpl().
llvm-svn: 153718
Fixed an issue that could cause circular type parsing that will assert and kill LLDB.
Prior to this fix the DWARF parser would always create class types and not start their definitions (for both C++ and ObjC classes) until we were asked to complete the class later. When we had cases like:
class A
{
class B
{
};
};
We would alway try to complete A before specifying "A" as the decl context for B. Turns out we can just start the definition and still not complete the class since we can check the TagDecl::isCompleteDefinition() function. This only works for C++ types. This means we will not be pulling in the full definition of parent classes all the time and should help with our memory consumption and also reduce the amount of debug info we have to parse.
I also reduced redundant code that was checking in a lldb::clang_type_t was a possible C++ dynamic type since it was still completing the type, just to see if it was dynamic. This was fixed in another function that was checking for a type being dynamic as an ObjC or a C++ type, but there was dedicated fucntion for C++ that we missed.
llvm-svn: 153713
Symbol files (dSYM files on darwin) can now be specified during program execution:
(lldb) target symbols add /path/to/symfile/a.out.dSYM/Contents/Resources/DWARF/a.out
This command can be used when you have a debug session in progress and want to add symbols to get better debug info fidelity.
llvm-svn: 153693
Line tables when using DWARF in .o files can be wrong when two entries get moved around by the compiler. This was due to incorrect logic in the line entry comparison operator.
llvm-svn: 153685
We are introducing a new Logger class on the Python side. This has the same purpose, but is unrelated, to the C++ logging facility
The Pythonic logging can be enabled by using the following scripting commands:
(lldb) script Logger._lldb_formatters_debug_level = {0,1,2,...}
0 = no logging
1 = do log
2 = flush after logging each line - slower but safer
3 or more = each time a Logger is constructed, log the function that has created it
more log levels may be added, each one being more log-active than the previous
by default, the log output will come out on your screen, to direct it to a file:
(lldb) script Logger._lldb_formatters_debug_filename = 'filename'
that will make the output go to the file - set to None to disable the file output and get screen logging back
Logging has been enabled for the C++ STL formatters and for Cocoa class NSData - more logging will follow
synthetic children providers for classes list and map (both libstdcpp and libcxx) now have internal capping for safety reasons
this will fix crashers where a malformed list or map would not ever meet our termination conditions
to set the cap to a different value:
(lldb) script {gnu_libstdcpp|libcxx}.{map|list}_capping_size = new_cap (by default, it is 255)
you can optionally disable the loop detection algorithm for lists
(lldb) script {gnu_libstdcpp|libcxx}.list_uses_loop_detector = False
llvm-svn: 153676
for unbacked properties. We support two variants:
one in which the getter/setter are provided by
selector ("mySetter:") and one in which the
getter/setter are provided by signature
("-[MyClass mySetter:]").
llvm-svn: 153675
<rdar://problem/11051056>
Found a race condition when sending async packets in the ProcessGDBRemote.
A little background: GDB remote clients can only send one packet at a time. You must send a packet and wait for a response. So when we continue, we obviously can't hold up the calling thread waiting for the process to stop again, so we have an async thread in the ProcessGDBRemote whose only job is to run packets that control the inferior process. When you send a continue packet, the only packet you can send is an interrupt packet (which consists of sending a CTRL+C (or a '\x03' byte)). This then stops the inferior and we can send the async packet, and then resume the target. There was a race condition that often happened during stepping where we are doing a source level single step which consists of many instruction steps and a few runs here and there when we step into a function. So the flow looks like:
inst single step
inst single step
inst single step
inst single step
inst single step
step BP and run
inst single step
inst single step
inst single step
Now if we got an async packet while the program is running we get something like:
send --> continue
send --> interrupt
recv <-- interrupt stop reply packet
send --> async packet
recv <-- async response
send --> continue again and wait for actual stop
Problems arise when this was happening when single stepping a thread where we would get:
send --> step thread 123
send --> interrupt
send --> stop reply for thread 123 (from the step)
Now we _might_ have an extra stop reply packet from the "interrupt" which we weren't checking for and we could end up with:
send --> async packet (like memory read!)
recv <-- async response (which is the interrupt stop reply packet)
Now we have the read memroy reply sitting in our buffer and waiting to be used as the reply for the next packet...
To further complicate things, the single step should have exited the async thread since the run control is finished, but now it will continue if it was interrupted.
The fixes I checked in to two major things:
- watch for the extra stop reply if we need to
- make sure we exit from the async thread run loop when the previous run control (like the instruction level single step) is finished.
Needless to say this makes very fast stepping in Xcode much more reliable.
llvm-svn: 153629
Fixed an issue with stepping where the stack frame list could get changed out from underneath you when multiple threads start accessing frame info.
llvm-svn: 153627
with recent Clang. Clang is now stricter about
presence of complete types and about use of the
"template" keyword in C++ for template-dependent
types.
llvm-svn: 153563
indicates that the section is thread specific. Any functions the load a module
given a slide, will currently ignore any sections that are thread specific.
lldb_private::Section now has:
bool
Section::IsThreadSpecific () const
{
return m_thread_specific;
}
void
Section::SetIsThreadSpecific (bool b)
{
m_thread_specific = b;
}
The ELF plug-in has been modified to set this for the ".tdata" and the ".tbss"
sections.
Eventually we need to have each lldb_private::Thread subclass be able to
resolve a thread specific section, but for now they will just not resolve. The
code for that should be trivual to add, but the address resolving functions
will need to be changed to take a "ExecutionContext" object instead of just
a target so that thread specific sections can be resolved.
llvm-svn: 153537
1 - sections only get a valid VM size if they have SHF_ALLOC in the section flags
2 - symbol names are marked as mangled if they start with "_Z"
Also fixed the DWARF parser to correctly use the section file size when extracting the DWARF.
llvm-svn: 153496
A new setting enable-synthetic-value is provided on the target to disable this behavior.
There also is a new GetNonSyntheticValue() API call on SBValue to go back from synthetic to non-synthetic. There is no call to go from non-synthetic to synthetic.
The test suite has been changed accordingly.
Fallout from changes to type searching: an hack has to be played to make it possible to use maps that contain std::string due to the special name replacement operated by clang
Fixing a test case that was using libstdcpp instead of libc++ - caught as a consequence of said changes to type searching
llvm-svn: 153495
Fixed type lookups to "do the right thing". Prior to this fix, looking up a type using "foo::bar" would result in a type list that contains all types that had "bar" as a basename unless the symbol file was able to match fully qualified names (which our DWARF parser does not).
This fix will allow type matches to be made based on the basename and then have the types that don't match filtered out. Types by name can be fully qualified, or partially qualified with the new "bool exact_match" parameter to the Module::FindTypes() method.
This fixes some issue that we discovered with dynamic type resolution as well as improves the overall type lookups in LLDB.
llvm-svn: 153482
Patched LLVM to handle generic i386 relocations.
This avoids some sudden termination problems on
i386 where the JIT would exit() out reporting
"Invalid CPU type!"
llvm-svn: 153467
Adding a test case that checks that we do not complete types before due time. This should help us track cases similar to the cascading data formatters.
llvm-svn: 153363
We do this by delegating to two available Watchpoint Register Pairs (wvr, wcr). With
each pair handling the 4 bytes of (uint64_t)variable.
llvm-svn: 153300
parse the output from "log enable --timestamp ...." and converts it to be relative
to the first timestamp and shows the time deltas between log lines. This can also
be used as a stand along script outside of lldb:
./delta.py log.txt
llvm-svn: 153288
Fixed a performance regression when dynamic types are enable where we would ask a C++ type if it can possibly be dynamic. Previously we would force the type to complete itself and then anwwer the question definitively. Now we ask the type if it is already complete and only definitively answer the question for completed types and just say "yes" for non-complete C++ types. We also always now answer yes for Objective C classes and do not complete those types either.
llvm-svn: 153284
- Addresses with no description were given
comments, leading to useless comments like
"; , "
- Addresses weren't resolved with respect
to the correct module.
llvm-svn: 153274
that the inferior cannot execute past the watchpoint-triggering instruction.
The solution is disable the watchpoint before resuming the inferior and make it hardware single step;
when the inferior stops again due to single step, re-enable the watchpoint and disable the single step
to make the inferior able to continue again without obstacle.
rdar://problem/9667960
llvm-svn: 153273
This is the feature that allowed the user to have things like:
class Base { ... };
class Derived : public Base { ... };
and have formatters defined for Base work automatically for Derived.
This feature turned out to be too expensive since it requires completing types.
This patch takes care of removing cascading (other than typedefs chain cascading), updating the test suite accordingly, and adding required Cocoa class names to keep the AppKit formatters working
llvm-svn: 153272
them both installed with the LLVM MC version being the default. I renamed the
name of the LLVM MC disassembler plug-in to "llvm-mc" and the LLVM enhanced
disassembly plug-in to "llvm-edis" and they can both be installed for now.
To use the "llvm-edis" disassembler, you can just specify it while disassembling:
(lldb) disassemble --plugin llvm-edis --name main
(lldb) disassemble --plugin llvm-mc --name main
This will allow us to compare the output of the two disassembler and eventually
deprecate the old one when the new one is ready. But it does use the new disassembler
by default so we continue to test it on a daily basis.
llvm-svn: 153231
However, the debugserver cannot get past the instruction which triggered the watchpoint.
So a workaround is in place for the time being which disables the triggered watchpoint
before resuming.
Lots of commented out printf's remain in the source which needs to be cleaned up.
WIP rdar://problem/9667960
llvm-svn: 153228
relocations (LLVM revision 153147). Now when
we report section locations in the target process,
LLVM will apply both those relocations whose
targets are in that section and those relocations
which reside in that section and point to other
sections.
llvm-svn: 153199
the migration to ModuleSpec objects this broke and is now fixed.
Also fixed a case in the darwin kernel dynamic loader where we just need to
trust the load address of the kernel if we can't read it from memory.
llvm-svn: 153164
Each platform now knows if it can handle an architecture and a platform can be found using an architecture. Each platform can look at the arch, vendor and OS and know if it should be used or not.
llvm-svn: 153104
LLDB can match incorrect line table entries when an address is between two valid line entries (in the gap between the valid debug info), now it doesn't!
llvm-svn: 153077
(lldb) file /path/to/file.so
(lldb) crashlog crash.log
....
Then if the file.so has already been loaded it will use the one that is already in LLDB without trying to match up the paths.
llvm-svn: 153075
to pass to the toolchain in order to build the inferior programs to be run/debugged
duirng the test suite. The architecture might dictate some special CFLAGS which are
more easily specified in a central place (like the command line) instead of inside
make rules.
For Example,
./dotest.py -v -r /shared/phone -A armv7 -E "-isysroot your_sdk_root" functionalities/watchpoint/hello_watchpoint
will relocate the particular test directory ('functionalities/watchpoint/hello_watchpoint' in this case) to a
new directory named '/shared/phone'. The particular incarnation of the architecture-compiler combination of the
test support files are therefore to be found under:
/shared/phone.arch=armv7-compiler=clang/functionalities/watchpoint/hello_watchpoint
The building of the inferior programs under testing is now working.
The actual launching/debugging of the inferior programs are not yet working,
neither is the setting of a watchpoint on the phone.
llvm-svn: 153070
Changes to synthetic children:
- the update(self): function can now (optionally) return a value - if it returns boolean value True, ValueObjectSyntheticFilter will not clear its caches across stop-points
this should allow better performance for Python-based synthetic children when one can be sure that the child ValueObjects have not changed
- making a difference between a synthetic VO and a VO with a synthetic value: now a ValueObjectSyntheticFilter will not return itself as its own synthetic value, but will (correctly)
claim to itself be synthetic
- cleared up the internal synthetic children architecture to make a more consistent use of pointers and references instead of shared pointers when possible
- major cleanup of unnecessary #include, data and functions in ValueObjectSyntheticFilter itself
- removed the SyntheticValueType enum and replaced it with a plain boolean (to which it was equivalent in the first place)
Some clean ups to the summary generation code
Centralized the code that clears out user-visible strings and data in ValueObject
More efficient summaries for libc++ containers
llvm-svn: 153061
Fixed a case where the source path remappings on the module were too expensive to
use when we try to verify (stat the file system) that the remapped path points to
a valid file. Now we will use the lldb_private::Module path remappings (if any) when
parsing the debug info without verifying that the paths exist so we don't slow down
line table parsing speeds.
llvm-svn: 153059
GetSupportFileAtIndex(), GetNumSupportFiles(), FindSupportFileIndex():
Add API support for getting the list of files in a compilation unit.
GetNumCompileUnits(), GetCompileUnitAtIndex():
Add API support for retrieving the compilation units in a module.
llvm-svn: 152942
- Clang now completes all Objective-C objects (if
they are not already complete, and they have
external lexical sources) during structure
layout, avoiding a LLDB crash.
- The Clang Decl printer handles reference types
correctly. This prevents LLDB from crashing
when expression logging is enabled.
llvm-svn: 152897
rdar://problem/11034702
For the time being, skip the relevant disassemble action which resulted in a crash.
Minor modification (print out format) to the existing TestDisassembleRawBytes.py test file.
llvm-svn: 152822
Fixed a case where if you have a argument stirng that ends with a '\' character, it would infinite loop while consuming all of your memory.
Also fixed a case where non-quote terminated strings would inefficiently be handled.
llvm-svn: 152809
Made sure that the root XPC service validate the right before starting the service. The right is created and authenticated by clients (in this case, lldb) and transferred over for validiation.
llvm-svn: 152802
Now when LLDB reports a variable, it has a
complete type. Similarly, when it reports
members of a struct, it completes their types.
Also, when it creates the result variable for
an expression, it ensures that variable's type
is complete.
This ensures compliance with Clang's
expectations, preventing potential crashes.
llvm-svn: 152771
http://llvm.org/bugs/show_bug.cgi?id=12232
Fixed a case where a missing "break" in a switch statement could cause an assertion to fire and kill the debug session.
The fix was derived from the findings of Andrea Bigagli, thanks Andrea.
llvm-svn: 152741
Fixed an issue with the FUNC_STARTS load command where we would get the
symbol size wrong and we would add all sorts of symbols due to bit zero being
set to indicate thumb.
llvm-svn: 152696
Simplify the locking strategy for Module and its owned objects to always use the Module's mutex to avoid A/B deadlocks. We had a case where a symbol vendor was locking itself and then calling a function that would try to get it's Module's mutex and at the same time another thread had the Module mutex that was trying to get the SymbolVendor mutex. Now any classes that inherit from ModuleChild should use the module lock using code like:
void
ModuleChildSubclass::Function
{
ModuleSP module_sp(GetModule());
if (module_sp)
{
lldb_private::Mutex::Locker locker(module_sp->GetMutex());
... do work here...
}
}
This will help avoid deadlocks by using as few locks as possible for a module and all its child objects and also enforce detecting if a module has gone away (the ModuleSP will be returned empty if the weak_ptr does refer to a valid object anymore).
llvm-svn: 152679
For EmulateInstructionARM::EmulatePUSH(), fix the logical branch for when pc is pushed to behave
like the other cases where:
context.SetRegisterToRegisterPlusOffset (reg_info, sp_reg, addr - sp);
is called to inform of the operation to set a register value to a memory location calculated from
a base register plus an offset.
llvm-svn: 152670
This has been done for those summaries where the difference is only cosmetic (e.g. naming things as items instead of values, ...)
The LLDB output style has been preserved when it provides more information (e.g. telling the type as well as the value of an NSNumber)
Test cases have been updated to reflect the updated output style where necessary
llvm-svn: 152592
std::string has a summary provider
std::vector std::list and std::map have both a summary and a synthetic children provider
Given the usage of a custom namespace (std::__1::classname) for the implementation of libc++, we keep both libstdcpp and libc++ formatters enabled at the same time since that raises no conflicts and enabled for seamless transition between the two
The formatters for libc++ reside in a libcxx category, and are loaded from libcxx.py (to be found in examples/synthetic)
The formatters-stl test cases have been divided to be separate for libcxx and libstdcpp. This separation is necessary because
(a) we need different compiler flags for libc++ than for libstdcpp
(b) libc++ inlines a lot more than libstdcpp and some code changes were required to accommodate this difference
llvm-svn: 152570
load notification for the first load) then we will set it the runtime to NULL and won't re-search for it.
Added a way for the dynamic loader to force a re-search, since it knows the world has changed.
llvm-svn: 152453
Get function boundaries from the LC_FUNCTION_STARTS load command. This helps to determine symbol sizes and also allows us to be able to debug stripped binaries.
If you have a stack backtrace that goes through a function that has been stripped from the symbol table, the variables for any functions above that stack frame will most likely be incorrect. It can also affect our ability to step in/out/through of a function.
llvm-svn: 152381
Don't show variable values in Xcode when they are out of scope. This allows Xcode to step a lot faster when there are many variables in the variables view.
llvm-svn: 152380