Finish off PR23080 by renaming the debug info IR constructs from `MD*`
to `DI*`. The last of the `DIDescriptor` classes were deleted in
r235356, and the last of the related typedefs removed in r235413, so
this has all baked for about a week.
Note: If you have out-of-tree code (like a frontend), I recommend that
you get everything compiling and tests passing with the *previous*
commit before updating to this one. It'll be easier to keep track of
what code is using the `DIDescriptor` hierarchy and what you've already
updated, and I think you're extremely unlikely to insert bugs. YMMV of
course.
Back to *this* commit: I did this using the rename-md-di-nodes.sh
upgrade script I've attached to PR23080 (both code and testcases) and
filtered through clang-format-diff.py. I edited the tests for
test/Assembler/invalid-generic-debug-node-*.ll by hand since the columns
were off-by-three. It should work on your out-of-tree testcases (and
code, if you've followed the advice in the previous paragraph).
Some of the tests are in badly named files now (e.g.,
test/Assembler/invalid-mdcompositetype-missing-tag.ll should be
'dicompositetype'); I'll come back and move the files in a follow-up
commit.
llvm-svn: 236120
This is a compromise: with this simple patch, we should always handle a chain of exactly 3
operations optimally, but we're not generating the optimal balanced binary tree for a longer
sequence.
In general, this transform will reduce the dependency chain for a sequence of instructions
using N operands from a worst case N-1 dependent operations to N/2 dependent operations.
The optimal balanced binary tree would reduce the chain to log2(N).
The trade-off for not dealing with longer sequences is: (1) we have less complexity in the
compiler, (2) we avoid unknown compile-time blowup calculating a balanced tree, and (3) we
don't need to worry about the increased register pressure required to parallelize longer
sequences. It also seems unlikely that we would ever encounter really long strings of
dependent ops like that in the wild, but I'm not sure how to verify that speculation.
FWIW, I see no perf difference for test-suite running on btver2 (x86-64) with -ffast-math
and this patch.
We can extend this patch to cover other associative operations such as fmul, fmax, fmin,
integer add, integer mul.
This is a partial fix for:
https://llvm.org/bugs/show_bug.cgi?id=17305
and if extended:
https://llvm.org/bugs/show_bug.cgi?id=21768https://llvm.org/bugs/show_bug.cgi?id=23116
The issue also came up in:
http://reviews.llvm.org/D8941
Differential Revision: http://reviews.llvm.org/D9232
llvm-svn: 236031
This is a preliminary step to using the IR-level floating-point fast-math-flags in the SDAG (D8900).
In this patch, we introduce the optimization flags as their own struct. As noted in the TODO comment,
we should eventually share this data between the IR passes and the backend.
We also switch the existing nsw / nuw / exact bit functionality of the BinaryWithFlagsSDNode class to
use the new struct.
The tradeoff is that instead of using the free but limited space of SDNode's SubclassData, we add a
data member to the subclass. This means we don't have to repeat all of the get/set methods per flag,
but we're potentially adding size to all nodes of this subclassi type.
In practice on 64-bit systems (measured on Linux and MacOS X), there is no size difference between an
SDNode and BinaryWithFlagsSDNode after this change: they're both 80 bytes. This means that we had at
least one free byte to play with due to struct alignment.
Differential Revision: http://reviews.llvm.org/D9325
llvm-svn: 235997
[DebugInfo] Add debug locations to constant SD nodes
This adds debug location to constant nodes of Selection DAG and updates
all places that create constants to pass debug locations
(see PR13269).
Can't guarantee that all locations are correct, but in a lot of cases choice
is obvious, so most of them should be. At least all tests pass.
Tests for these changes do not cover everything, instead just check it for
SDNodes, ARM and AArch64 where it's easy to get incorrect locations on
constants.
This is not complete fix as FastISel contains workaround for wrong debug
locations, which drops locations from instructions on processing constants,
but there isn't currently a way to use debug locations from constants there
as llvm::Constant doesn't cache it (yet). Although this is a bit different
issue, not directly related to these changes.
Differential Revision: http://reviews.llvm.org/D9084
llvm-svn: 235989
This adds debug location to constant nodes of Selection DAG and updates
all places that create constants to pass debug locations
(see PR13269).
Can't guarantee that all locations are correct, but in a lot of cases choice
is obvious, so most of them should be. At least all tests pass.
Tests for these changes do not cover everything, instead just check it for
SDNodes, ARM and AArch64 where it's easy to get incorrect locations on
constants.
This is not complete fix as FastISel contains workaround for wrong debug
locations, which drops locations from instructions on processing constants,
but there isn't currently a way to use debug locations from constants there
as llvm::Constant doesn't cache it (yet). Although this is a bit different
issue, not directly related to these changes.
Differential Revision: http://reviews.llvm.org/D9084
llvm-svn: 235977
I previously thought switch clusters would need to use uint64_t in case
the weights of multiple cases overflowed a 32-bit int. It turns
out that the weights on a terminator instruction are capped to allow for
being added together, so using a uint32_t should be safe.
llvm-svn: 235945
Previously, the code would try to put a fall-through case last,
even if that meant moving a case with much higher branch weight
further down the chain.
Ordering by branch weight is most important, putting a fall-through
block last is secondary.
llvm-svn: 235942
Looking into 23095, my best guess is that the CodeGen library itself isn't getting linked and initialized properly. To make this slightly more obvious to consumers of LLVM, emit a different error message if we can tell that the registry is empty vs you've simply happened to name a collector which hasn't been registered.
llvm-svn: 235824
right scaling.
In the function canFoldInAddressingMode, VT is computed as the type of the
destination/source of a LOAD/STORE operations, instead of the memory type of the
operation.
On targets with a scaling factor on the offset of the LOAD/STORE operations, the
function may return false for actually valid cases. This may then prevent the
selection of profitable pre or post indexed load/store operations, and instead
select pre or post indexed load/store for unprofitable cases.
Patch by Francois de Ferriere <francois.de-ferriere@st.com>!
Differential Revision: http://reviews.llvm.org/D9146
llvm-svn: 235780
This introduces an intrinsic called llvm.eh.exceptioncode. It is lowered
by copying the EAX value live into whatever basic block it is called
from. Obviously, this only works if you insert it late during codegen,
because otherwise mid-level passes might reschedule it.
llvm-svn: 235768
I couldn't provide a testcase as none of the public targets has wide
register classes with alot of subregisters and at the same time an
instruction which "ReMaterializable" and "AsCheapAsAMove" (could
probably be added for R600).
llvm-svn: 235668
We were asserting on code like this:
extern "C" unsigned long _exception_code();
void might_crash(unsigned long);
void foo() {
__try {
might_crash(0);
} __except(1) {
might_crash(_exception_code());
}
}
Gtest and many other libraries get the exception code from the __except
block. What's supposed to happen here is that EAX is live into the
__except block, and it contains the exception code. Eventually we'll
represent that as a use of the landingpad ehptr value, but for now we
can replace it with undef.
llvm-svn: 235649
remove copies that are useful after breaking some hardware dependencies.
In other words, handle this kind of situations conservatively by assuming reg2
is redefined by the undef flag.
reg1 = copy reg2
= inst reg2<undef>
reg2 = copy reg1
Copy propagation used to remove the last copy.
This is incorrect because the undef flag on reg2 in inst, allows next
passes to put whatever trashed value in reg2 that may help.
In practice we end up with this code:
reg1 = copy reg2
reg2 = 0
= inst reg2<undef>
reg2 = copy reg1
This fixes PR21743.
llvm-svn: 235647
Third time's the charm. The previous commit was reverted as a
reverse for-loop in SelectionDAGBuilder::lowerWorkItem did 'I--'
on an iterator at the beginning of a vector, causing asserts
when using debugging iterators. This commit fixes that.
llvm-svn: 235608
Patch to remove extra bitcasts from shuffles, this is often a legacy of XformToShuffleWithZero being used to combine bitmaskings (of float vectors bitcast to integer vectors) into shuffles: bitcast(shuffle(bitcast(s0),bitcast(s1))) -> shuffle(s0,s1)
Differential Revision: http://reviews.llvm.org/D9097
llvm-svn: 235578
This is a re-commit of r235101, which also fixes the problems with the previous patch:
- Switches with only a default case and non-fallthrough were handled incorrectly
- The previous patch tickled a bug in PowerPC Early-Return Creation which is fixed here.
> This is a major rewrite of the SelectionDAG switch lowering. The previous code
> would lower switches as a binary tre, discovering clusters of cases
> suitable for lowering by jump tables or bit tests as it went along. To increase
> the likelihood of finding jump tables, the binary tree pivot was selected to
> maximize case density on both sides of the pivot.
>
> By not selecting the pivot in the middle, the binary trees would not always
> be balanced, leading to performance problems in the generated code.
>
> This patch rewrites the lowering to search for clusters of cases
> suitable for jump tables or bit tests first, and then builds the binary
> tree around those clusters. This way, the binary tree will always be balanced.
>
> This has the added benefit of decoupling the different aspects of the lowering:
> tree building and jump table or bit tests finding are now easier to tweak
> separately.
>
> For example, this will enable us to balance the tree based on profile info
> in the future.
>
> The algorithm for finding jump tables is quadratic, whereas the previous algorithm
> was O(n log n) for common cases, and quadratic only in the worst-case. This
> doesn't seem to be major problem in practice, e.g. compiling a file consisting
> of a 10k-case switch was only 30% slower, and such large switches should be rare
> in practice. Compiling e.g. gcc.c showed no compile-time difference. If this
> does turn out to be a problem, we could limit the search space of the algorithm.
>
> This commit also disables all optimizations during switch lowering in -O0.
>
> Differential Revision: http://reviews.llvm.org/D8649
llvm-svn: 235560
This removes the -sehprepare flag and makes __C_specific_handler
functions always to use WinEHPrepare.
This was tested by building all of chromium_builder_tests and running a
few tests that use SEH, but if something breaks, we can revert this.
llvm-svn: 235557
In particular, this handles SSA values that are live *out* of a handler.
The existing code only handles values that are live *in* to a handler.
It also handles phi nodes in the block where normal control should
resume after the end of a catch handler. When EH return points have phi
nodes, we need to split the return edge. It is impossible for phi
elimination to emit copies in the previous block if that block gets
outlined. The indirectbr that we leave in the function is only notional,
and is eliminated from the MachineFunction CFG early on.
Reviewers: majnemer, andrew.w.kaylor
Differential Revision: http://reviews.llvm.org/D9158
llvm-svn: 235545
This turned up after r235333, but was a pre-existing bug. The optimization
which transforms select(c, load, load) into a load of a select of the addresses
does not handle indexed loads (pre/post inc/dec). However, it did not check for
them either, leading to a crash if it tried to transform one of them.
llvm-svn: 235497
X86 backend.
The code generated for symbolic targets is identical to the code generated for
constant targets, except that a relocation is emitted to fix up the actual
target address at link-time. This allows IR and object files containing
patchpoints to be cached across JIT-invocations where the target address may
change.
llvm-svn: 235483
We should also teach the inliner to collapse framerecover of
frameaddress of the current frame down to an alloca, but that can happen
later.
llvm-svn: 235459
Remove the `DIArray` and `DITypeArray` typedefs, preferring the
underlying types (`DebugNodeArray` and `MDTypeRefArray`, respectively).
llvm-svn: 235413
Remove early returns for when `getVariable()` is null, and just assert
that it never happens. The Verifier already confirms that there's a
valid variable on these intrinsics, so we should assume the debug info
isn't broken. I also updated a check for a `!dbg` attachment, which the
Verifier similarly guarantees.
llvm-svn: 235400
Keep the old SEH fan-in lowering on by default for now, since projects
rely on it. This will make it easy to test this change with a simple
flag flip.
llvm-svn: 235399
Fixed issue with the combine of CONCAT_VECTOR of 2 BUILD_VECTOR nodes - the optimisation wasn't ensuring that the scalar operands of both nodes were the same type/size for implicit truncation.
Test case spotted by Patrik Hagglund
llvm-svn: 235371
Summary:
This fixes http://llvm.org/bugs/show_bug.cgi?id=16439.
This is one possible way to approach this. The other would be to split InL>>(nbits-Amt) into (InL>>(nbits-1-Amt))>>1, which is also valid since since we only need to care about Amt up nbits-1. It's hard to tell which one is better since the shift might be expensive if this stage of expansion is not yet a legal machine integer, whereas comparisons with zero are relatively cheap at all sizes, but more expensive than a shift if the shift is on a legal machine type.
Patch by Keno Fischer!
Test Plan: regression test from http://reviews.llvm.org/D7752
Reviewers: chfast, resistor
Reviewed By: chfast, resistor
Subscribers: sanjoy, resistor, chfast, llvm-commits
Differential Revision: http://reviews.llvm.org/D4978
llvm-svn: 235370
Delete subclasses of (the already deleted) `DIType` in favour of
directly using pointers from the `Metadata` hierarchy.
While `DICompositeType` wraps `MDCompositeTypeBase` and `DIDerivedType`
wraps `MDDerivedTypeBase`, most uses of each really meant the more
specific `MDCompositeType` and `MDDerivedType`.
llvm-svn: 235351
The version of `constructTypeDIE()` for `MDSubroutineType` is unrelated
to (and has different callers than) the `MDCompositeType`. Split the
two in half.
This simplifies an upcoming patch to delete `DICompositeType`. There
shouldn't be any real functionality change here. `createTypeDIE()` is
`cast<>`'ing where it didn't need to before, but that function in turn
is only called for true `MDCompositeType`s.
llvm-svn: 235349
Update comment style in `DwarfUnit`.
- Drop duplicated comments at definition, and update the comments at
the declaration where the definition comments looked newer or more
complete.
- Drop the `functionName -` prefix.
- Add `\brief` in a few places.
- Remove a few comments entirely that weren't adding value (just
turned the function name and arguments into a sentence).
llvm-svn: 235345
This is the last major parent class, so I'll probably start deleting
classes in batches now. Looks like many of the references to the DI*
hierarchy were updated organically along the way.
llvm-svn: 235331
Replace uses of `DIScope` with `MDScope*`. There was one spot where
I've left an `MDScope*` uninitialized (where `DIScope` would have been
default-initialized to `nullptr`) -- this is intentional, since the
if/else that follows should unconditional assign it to a value.
llvm-svn: 235327
When an inline asm call has an output register marked as early-clobber, but
that same register is also an input operand, what should we do? GCC accepts
this, and is documented to accept this for read/write operands saying,
"Furthermore, if the earlyclobber operand is also a read/write operand, then
that operand is written only after it's used." For write-only operands, the
situation seems less clear, but I have at least one existing codebase that
assumes this will work, in part because it has syscall macros like this:
({ \
register uint64_t r0 __asm__ ("r0") = (__NR_ ## name); \
register uint64_t r3 __asm__ ("r3") = ((uint64_t) (arg0)); \
register uint64_t r4 __asm__ ("r4") = ((uint64_t) (arg1)); \
register uint64_t r5 __asm__ ("r5") = ((uint64_t) (arg2)); \
__asm__ __volatile__ \
("sc" \
: "=&r"(r0),"=&r"(r3),"=&r"(r4),"=&r"(r5) \
: "0"(r0), "1"(r3), "2"(r4), "3"(r5) \
: "r6","r7","r8","r9","r10","r11","r12","cr0","memory"); \
r3; \
})
Furthermore, with register aliases and subregister relationships that only the
backend knows about, rejecting this in the frontend seems like a difficult
proposition (if we wanted to do so). However, keeping the early-clobber flag on
the INLINEASM MI does not work for us, because it will cause the register's
live interval to end to soon (so it will not appear defined to be used as an
input).
Fortunately, fixing this does not seem hard: When forming the INLINEASM MI,
check to see if any of the early-clobber outputs are also inputs, and if so,
remove the early-clobber flag.
llvm-svn: 235283
Instead of merging everything together, look at the users of
GlobalVariables, and try to group them by function, to create
sets of globals used "together".
Using that information, a less-aggressive alternative is to keep merging
everything together *except* globals that are only ever used alone, that
is, those for which it's clearly non-profitable to merge with others.
In my testing, grouping by Function is too aggressive, but grouping by
BasicBlock is too conservative. Anything in-between isn't trivially
available, so stick with Function grouping for now.
cl::opts are added for testing; both enabled by default.
A few of the testcases aren't testing the merging proper, but just
various edge cases when merging does occur. Update them to use the
previous grouping behavior. Also, one of the tests is unrelated to
GlobalMerge; change it accordingly.
While there, switch to r234666' flags rather than the brutal -O3.
Differential Revision: http://reviews.llvm.org/D8070
llvm-svn: 235249
Stop using `DIDescriptor` and its subclasses in the `DebugInfoFinder`
API, as well as the rest of the API hanging around in `DebugInfo.h`.
llvm-svn: 235240
This commit removes `DebugLocList` and replaces it with
`DebugLocStream`.
- `DebugLocEntry` no longer contains its byte/comment streams.
- The `DebugLocEntry` list for a variable/inlined-at pair is allocated
on the stack, and released right after `DebugLocEntry::finalize()`
(possible because of the refactoring in r231023). Now, only one
list is in memory at a time now.
- There's a single unified stream for the `.debug_loc` section that
persists, stored in the new `DebugLocStream` data structure.
The last point is important: this collapses the nested `SmallVector<>`s
from `DebugLocList` into unified streams. We previously had something
like the following:
vec<tuple<Label, CU,
vec<tuple<BeginSym, EndSym,
vec<Value>,
vec<char>,
vec<string>>>>>
A `SmallVector` can avoid allocations, but is statically fairly large
for a vector: three pointers plus the size of the small storage, which
is the number of elements in small mode times the element size).
Nesting these is expensive, since an inner vector's size contributes to
the element size of an outer one. (Nesting any vector is expensive...)
In the old data structure, the outer vector's *element* size was 632B,
excluding allocation costs for when the middle and inner vectors
exceeded their small sizes. 312B of this was for the "three" pointers
in the vector-tree beneath it. If you assume 1M functions with an
average of 10 variable/inlined-at pairs each (in an LTO scenario),
that's almost 6GB (besides inner allocations), with almost 3GB for the
"three" pointers.
This came up in a heap profile a little while ago of a `clang -flto -g`
bootstrap, with `DwarfDebug::collectVariableInfo()` using something like
10-15% of the total memory.
With this commit, we have:
tuple<vec<tuple<Label, CU, Offset>>,
vec<tuple<BeginSym, EndSym, Offset, Offset>>,
vec<char>,
vec<string>>
The offsets are used to create `ArrayRef` slices of adjacent
`SmallVector`s. This reduces the number of vectors to four (unrelated
to the number of variable/inlined-at pairs), and caps the number of
allocations at the same number.
Besides saving memory and limiting allocations, this is NFC.
I don't know my way around this code very well yet, but I wonder if we
could go further: why stream to a side-table, instead of directly to the
output stream?
llvm-svn: 235229
CatchHigh may be smaller than TryHigh if we reuse an outlined catch
handler for two different invokes with different EH states. We have no
evidence which shows that CatchHigh must be greater than TryHigh or
TryLow. We can revisit this if we turn out to be wrong.
llvm-svn: 235223
Summary:
- Handle TypePromoteFloat in switch statements
- Move an expression into an assert to avoid unused variable in
non-assert builds.
Reviewers: srhines, ab
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D9086
llvm-svn: 235220
Summary:
This patch adds legalization support to operate on FP16 as a load/store type
and do operations on it as floats.
Tests for ARM are added to test/CodeGen/ARM/fp16-promote.ll
Reviewers: srhines, t.p.northover
Differential Revision: http://reviews.llvm.org/D8755
llvm-svn: 235215
Catch blocks which are empty may be in the same state as their try
blocks. It is not meaningful to give the catch block its own state
number in this case because it can't do anything exceptional.
llvm-svn: 235212
Stop storing the `MDLocalVariable` in the `DebugLocEntry::Value`s. We
generate the list of `DebugLocEntry`s separately for each
variable/inlined-at pair, so the variable never actually changes here.
This is effectively NFC (aside from saving some memory and CPU time).
llvm-svn: 235202
We can calculate the variable type up front before calling
`DebugLocEntry::finalize()`. In fact, since we only care about the type
if it's an `MDBasicType`, don't even bother resolving it using the type
identifier map.
llvm-svn: 235201
This is a followon to r233681 - I'd misunderstood the semantics of FTRUNC,
and had confused it with (FP_ROUND ..., 0).
Thanks for Ahmed Bougacha for his post-commit review!
llvm-svn: 235191
This now emits simple, unoptimized xdata tables for __C_specific_handler
based on the handlers listed in @llvm.eh.actions calls produced by
WinEHPrepare.
This adds support for running __finally blocks when exceptions are
thrown, and removes the old landingpad fan-in codepath.
I ran some manual execution tests on small basic test cases with and
without optimization, as well as on Chrome base_unittests, which uses a
small amount of SEH. I'm sure there are bugs, and we may need to
revert.
llvm-svn: 235154
r235050 dropped the inlined-at field from `MDLocalVariable`, deferring
to the `!dbg` attachments. Fix `UserValue` to take the `!dbg` into
account when differentiating between variables.
llvm-svn: 235140
This is a major rewrite of the SelectionDAG switch lowering. The previous code
would lower switches as a binary tre, discovering clusters of cases
suitable for lowering by jump tables or bit tests as it went along. To increase
the likelihood of finding jump tables, the binary tree pivot was selected to
maximize case density on both sides of the pivot.
By not selecting the pivot in the middle, the binary trees would not always
be balanced, leading to performance problems in the generated code.
This patch rewrites the lowering to search for clusters of cases
suitable for jump tables or bit tests first, and then builds the binary
tree around those clusters. This way, the binary tree will always be balanced.
This has the added benefit of decoupling the different aspects of the lowering:
tree building and jump table or bit tests finding are now easier to tweak
separately.
For example, this will enable us to balance the tree based on profile info
in the future.
The algorithm for finding jump tables is O(n^2), whereas the previous algorithm
was O(n log n) for common cases, and quadratic only in the worst-case. This
doesn't seem to be major problem in practice, e.g. compiling a file consisting
of a 10k-case switch was only 30% slower, and such large switches should be rare
in practice. Compiling e.g. gcc.c showed no compile-time difference. If this
does turn out to be a problem, we could limit the search space of the algorithm.
This commit also disables all optimizations during switch lowering in -O0.
Differential Revision: http://reviews.llvm.org/D8649
llvm-svn: 235101
Fix for test case found by James Molloy - TRUNCATE of constant build vectors can be more simply achieved by simply replacing with a new build vector node with the truncated value type - no need to touch the scalar operands at all.
llvm-svn: 235079
The only type that isn't an integer, isn't floating point, and isn't
a vector; ladies and gentlemen, the gift that keeps on giving: x86_mmx!
Fixes PR23246.
Original message (reverted in r235062):
[CodeGen] Combine concat_vectors of scalars into build_vector.
Combine something like:
(v8i8 concat_vectors (v2i8 bitcast (i16)) x4)
into:
(v8i8 (bitcast (v4i16 BUILD_VECTOR (i16) x4)))
If any of the scalars are floating point, use that throughout.
Differential Revision: http://reviews.llvm.org/D8948
llvm-svn: 235072
Delete `DIRef<>`, and replace the remaining uses of it with
`TypedDebugNodeRef<>`. To minimize code churn, I've added typedefs from
`MDTypeRef` to `DITypeRef` (etc.).
llvm-svn: 235071
PR23080 is almost finished. With this commit, there's no consequential
API in `DIDescriptor` and its subclasses. What's left?
- Default-constructed to `nullptr`.
- Handy `const_cast<>` (constructed from `const`, but accessors are
non-`const`).
I think the safe way to catch those is to delete the classes and fix
compile errors. That'll be my next step, after I delete the `DITypeRef`
(etc.) wrapper around `MDTypeRef`.
llvm-svn: 235069
Continuing PR23080, gut `DIType` and its various subclasses, leaving
behind thin wrappers around the pointer types in the new debug info
hierarchy.
llvm-svn: 235064
The way we split SEH catch-all blocks can leave some dead EH values
behind at -O0. Try to remove them, and if we fail, replace them all with
undef.
Fixes a crash when removing the old unreachable landingpad which is
still used by extractvalue instructions in the catch-all block.
llvm-svn: 235061
Remove the accessors of `DIDerivedType` that downcast to
`MDDerivedType`, shifting the `cast<MDDerivedType>` into the callers.
Also remove `DIType::isValid()`, which is really just a check against
`nullptr` at this point.
llvm-svn: 235059
Remove 'inlinedAt:' from MDLocalVariable. Besides saving some memory
(variables with it seem to be single largest `Metadata` contributer to
memory usage right now in -g -flto builds), this stops optimization and
backend passes from having to change local variables.
The 'inlinedAt:' field was used by the backend in two ways:
1. To tell the backend whether and into what a variable was inlined.
2. To create a unique id for each inlined variable.
Instead, rely on the 'inlinedAt:' field of the intrinsic's `!dbg`
attachment, and change the DWARF backend to use a typedef called
`InlinedVariable` which is `std::pair<MDLocalVariable*, MDLocation*>`.
This `DebugLoc` is already passed reliably through the backend (as
verified by r234021).
This commit removes the check from r234021, but I added a new check
(that will survive) in r235048, and changed the `DIBuilder` API in
r235041 to require a `!dbg` attachment whose 'scope:` is in the same
`MDSubprogram` as the variable's.
If this breaks your out-of-tree testcases, perhaps the script I used
(mdlocalvariable-drop-inlinedat.sh) will help; I'll attach it to PR22778
in a moment.
llvm-svn: 235050
This avoids emitting code for unreachable landingpad blocks that contain
calls to llvm.eh.actions and indirectbr.
It's also a first step towards unifying the SEH and WinEH lowering
codepaths. I'm keeping the old fan-in lowering of SEH around until the
preparation version works well enough that we can switch over without
breaking existing users.
llvm-svn: 235037
This causes badness for GDB which expects to find a definition in any
compile_unit that has an entry for the variable in its pubnames.
llvm-svn: 234915
TargetRegisterInfo::getRegPressureLimit has a note that it is an old
model that relies on manually entered classes. Using the newer model of
register pressure sets seems more appropriate. We might eventually even
switch to lib/CodeGen/RegisterPressure.cpp, but we should probably do
incremental changes here.
Using the newer model also makes it easier to take regmasks into account
which is necessary to fix llvm.org/PR23143. I am currently also
preparing a patch for that, but would like to do this switch
independently.
Review: http://reviews.llvm.org/D8986
llvm-svn: 234880
Gut the `DIDescriptor` wrappers around `MDLocalScope` subclasses. Note
that `DILexicalBlock` wraps `MDLexicalBlockBase`, not `MDLexicalBlock`.
llvm-svn: 234850
Gut all the non-pointer API from the variable wrappers, except an
implicit conversion from `DIGlobalVariable` to `DIDescriptor`. Note
that if you're updating out-of-tree code, `DIVariable` wraps
`MDLocalVariable` (`MDVariable` is a common base class shared with
`MDGlobalVariable`).
llvm-svn: 234840
This is along the same lines as r234832, but for `DILocation`. Clean
out all accessors from `DILocation`. Any callers should be using
`MDLocation` directly (e.g., via `operator->()`).
llvm-svn: 234835
Completely gut `DIExpression`, turning it into a simple wrapper around
`MDExpression *`. There are two bits of magic left:
- It's constructed from `const MDExpression*` but convertible to
`MDExpression*`.
- It's default-constructed to `nullptr`.
Otherwise, it should behave quite like a raw pointer. Once I've done
the same to the rest of the `DIDescriptor` subclasses, I'll come back to
delete them entirely (and update call sites as necessary to deal with
the missing magic).
llvm-svn: 234832
There's only one user of the various `DIObjCProperty::is*Property()`
accessors -- `DwarfUnit::constructTypeDIE()` -- and it's just using the
reverse logic to reconstruct the bitfield. Drop this API and simplify
the only caller.
llvm-svn: 234818
Combine something like:
(v8i8 concat_vectors (v2i8 bitcast (i16)) x4)
into:
(v8i8 (bitcast (v4i16 BUILD_VECTOR (i16) x4)))
If any of the scalars are floating point, use that throughout.
Differential Revision: http://reviews.llvm.org/D8948
llvm-svn: 234809
Instead of calling the somewhat confusingly-named
`DIVariable::isInlinedFnArgument()`, do the check directly here.
There's possibly a small functionality change here: instead of
`dyn_cast<>`'ing `DV->getScope()` to `MDSubprogram`, I'm looking up the
scope chain for the actual subprogram. I suspect that this is a no-op
for function arguments so in practise there isn't a real difference.
I've also added a `FIXME` to check the `inlinedAt:` chain instead, since
I wonder if that would be more reliable than the
`MDSubprogram::describes()` function.
Since this was the only user of `DIVariable::isInlinedFnArgument()`,
delete it.
llvm-svn: 234799
`DIGlobalVariable::getGlobal()` isn't really helpful, it just does a
`dyn_cast_or_null<>`. Simplify its only user by doing the cast directly
and delete the code.
llvm-svn: 234796
This reverts commit r234717, reapplying r234698 (in spirit).
As described in r234717, the original `Verifier` check had a
use-after-free. Instead of storing pointers to "interesting" debug info
intrinsics whose bit piece expressions should be verified once we have
typerefs, do a second traversal. I've added a testcase to catch the
`llc` crasher.
Original commit message:
Verifier: Check for incompatible bit piece expressions
Convert an assertion into a `Verifier` check. Bit piece expressions
must fit inside the variable, and mustn't be the entire variable.
Catching this in the verifier will help us find bugs sooner, and makes
`DIVariable::getSizeInBits()` dead code.
llvm-svn: 234776
Revert "Remove default in fully-covered switch (to fix Clang -Werror -Wcovered-switch-default)"
Revert "R600: Add carry and borrow instructions. Use them to implement UADDO/USUBO"
Revert "LegalizeDAG: Try to use Overflow operations when expanding ADD/SUB"
Using overflow operations fails CodeGen/Generic/2011-07-07-ScheduleDAGCrash.ll
on hexagon, nvptx, and r600. Revert while I investigate.
llvm-svn: 234768
In case of different types used for the condition of the selects the
select(select) -> select(and) normalisation cannot be performed.
See also: http://reviews.llvm.org/D7622
llvm-svn: 234763
Fill in the TODO in CodeGenPrepare::OptimizeCallInst so that global
variables that are passed to memory intrinsics are aligned in the same
way that allocas are.
Differential Revision: http://reviews.llvm.org/D8421
llvm-svn: 234735
This reverts commit r234698.
This caused a use-after-free: `QueuedBitPieceExpressions` holds onto
references to `DbgInfoIntrinsic`s and references them past where they're
deleted (this is because the verifier is run as a function pass, and
then `verifyTypeRefs()` is called during `doFinalization()`).
I'll include a reduced crasher for `llc` when I recommit the check.
llvm-svn: 234717
Convert an assertion into a `Verifier` check. Bit piece expressions
must fit inside the variable, and mustn't be the entire variable.
Catching this in the verifier will help us find bugs sooner, and makes
`DIVariable::getSizeInBits()` dead code.
llvm-svn: 234698
The patch is generated using clang-tidy misc-use-override check.
This command was used:
tools/clang/tools/extra/clang-tidy/tool/run-clang-tidy.py \
-checks='-*,misc-use-override' -header-filter='llvm|clang' \
-j=32 -fix -format
http://reviews.llvm.org/D8925
llvm-svn: 234679
Currently, there's a single flag, checked by the pass itself.
It can't force-enable the pass (and is on by default), because it
might not even have been created, as that's the targets decision.
Instead, have separate explicit flags, so that the decision is
consistently made in the target.
Keep the flag as a last-resort "force-disable GlobalMerge" for now,
for backwards compatibility.
llvm-svn: 234666
This allows winehprepare to build sensible llvm.eh.actions calls for SEH
finally blocks. The pattern matching in this change is brittle and
should be replaced with something more robust soon. In the meantime,
this will let us write the code that produces __C_specific_handler xdata
tables, which we need regardless of how we decide to get finally blocks
through EH preparation.
llvm-svn: 234663
r234638 chained another transform below which was tripping over the
deleted instruction. Use after free found by asan in many regression
tests.
llvm-svn: 234654
Summary:
This change moves creating calls to `llvm.uadd.with.overflow` from
InstCombine to CodeGenPrep. Combining overflow check patterns into
calls to the said intrinsic in InstCombine inhibits optimization because
it introduces an intrinsic call that not all other transforms and
analyses understand.
Depends on D8888.
Reviewers: majnemer, atrick
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D8889
llvm-svn: 234638
WinEH currently turns invokes into calls. Long term, we will reconsider
this, but for now, make sure we remap the operands and clone the
successors of the new terminator.
llvm-svn: 234608
The IPToState table must be emitted after we have generated labels for
all functions in the table. Don't rely on the order of the list of
globals. Instead, utilize WinEHFuncInfo to tell us how many catch
handlers we expect to outline. Once we know we've visited all the catch
handlers, emit the cppxdata.
llvm-svn: 234566
For the most common ones (such as fadd), we already did the promotion.
Do the same thing for all the others.
Currently, we'll just crash/assert on all these operations, as
there's no hardware or libcall support whatsoever.
f16 (half) is specified as an interchange - not arithmetic - format,
and is expected to be promoted to single-precision for arithmetic
operations.
While there, teach the legalizer about promoting some of the (mostly
floating-point) operations that we never needed before.
Differential Revision: http://reviews.llvm.org/D8648
See related discussion on the thread for: http://reviews.llvm.org/D8755
llvm-svn: 234550