lib/Target/AMDGPU/SIRegisterInfo.cpp: In member function 'void llvm::SIRegisterInfo::spillSGPR(llvm::MachineBasicBlock::iterator, int, llvm::RegScavenger*) const':
lib/Target/AMDGPU/SIRegisterInfo.cpp:572:30: warning: variable 'SubRC' set but not used [-Wunused-but-set-variable]
const TargetRegisterClass *SubRC = nullptr;
^
lib/Target/AMDGPU/SIRegisterInfo.cpp: In member function 'void llvm::SIRegisterInfo::restoreSGPR(llvm::MachineBasicBlock::iterator, int, llvm::RegScavenger*) const':
lib/Target/AMDGPU/SIRegisterInfo.cpp:723:30: warning: variable 'SubRC' set but not used [-Wunused-but-set-variable]
const TargetRegisterClass *SubRC = nullptr;
^
The variable was assigned to, but never used. The functions called did not
mutate state. Simplify the logic and remove the variable. Identified by gcc
5.4.0.
llvm-svn: 288601
This solves a secondary problem seen in PR6137:
https://llvm.org/bugs/show_bug.cgi?id=6137#c6
This is similar to the bitwise logic op fold added with:
https://reviews.llvm.org/rL287707
And like that patch, I'm artificially restricting the
transform from vector <-> scalar types until we're sure
that the backend can handle that.
llvm-svn: 288584
Previously this pass was using up to 5% compile time in some cases which
is a bit much for what it is doing. The pass featured a full blown
data-flow analysis which in the default configuration was restricted to a
single block.
This rewrites the pass under the assumption that we only ever work on a
single block. This is done in a single pass maintaining a state machine
per general purpose register to catch LOH patterns.
Differential Revision: https://reviews.llvm.org/D27329
llvm-svn: 288561
VSX has instructions lxsiwax/lxsdx that can load 32/64 bit value into VSX register cheaply. That patch makes it known to memory cost model, so the vectorization of the test case in pr30990 is beneficial.
Differential Revision: https://reviews.llvm.org/D26713
llvm-svn: 288560
Summary:
This is a follow up to r288303, where I have introduced TrigramIndex
to speed up SpecialCaseList for the cases when all rules are
simple wildcards, like *hello*wor.d*.
Here, I add support for escaping, so that it's possible to
specify rules like *c\+\+abi*.
Reviewers: pcc
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D27318
llvm-svn: 288553
This resubmits r288529, which was resubmitted because it broke a
fuzzer bot. According to kcc@ the test that broke was flakey
and it is unlikely to be a result of this patch.
llvm-svn: 288549
Summary: Implement custom lowering of SHL_PARTS to enable lowering of left shift with larger than 32-bit shifts.
Reviewers: eliben, majnemer
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D27232
llvm-svn: 288541
Windows doesn't really support weak aliases, but with some
linker magic we can get something that's pretty close on
Windows. This introduces an interface to accessing weakly
aliased symbols that will work on any platform. Linker
magic changes to come in a separate patch.
Patch by Marcos Pividori
Differential Revision: https://reviews.llvm.org/D27235
llvm-svn: 288530
Pave the way for separating out platform specific
utility functions into separate files.
Patch by Marcos Pividori
Differential Revision: https://reviews.llvm.org/D27234
llvm-svn: 288529
For -O0 there might be unreachable BBs, which breaks the assumption that all the
BBs have an auxiliary data structure. In this patch, we add another interface
called findBBInfo() so that a nullptr can be returned for the unreachable BBs
(and the callers can ignore those BBs).
This fixes the bug reported
https://llvm.org/bugs/show_bug.cgi?id=31209
Differential Revision: https://reviews.llvm.org/D27280
llvm-svn: 288528
Add assembler support for all atomic instructions that weren't already
supported. Some of those could be used to implement codegen for 128-bit
atomic operations, but this isn't done here yet.
llvm-svn: 288526
Add assembler support for instructions manipulating the FPC.
Also add codegen support via the GCC compatibility builtins:
__builtin_s390_sfpc
__builtin_s390_efpc
llvm-svn: 288525
Move setting of hasSideEffects out of SystemZInstrFormats.td,
to allow use of the format classes for instructions where this
flag shouldn't be set. NFC.
llvm-svn: 288524
This reverts commit r288497, as it broke the AArch64 build of Compiler-RT's
builtins (twice: once in r288412 and once in r288497). We should investigate
this offline.
llvm-svn: 288508
Summary:
When X = 0 and Y = inf, the original code produces inf, but the transformed
code produces nan. So this transform (and its relatives) should only be
used when the no-infs-fp-math flag is explicitly enabled.
Also disable the transform using fmad (intermediate rounding) when unsafe-math
is not enabled, since it can reduce the precision of the result; consider this
example with binary floating point numbers with two bits of mantissa:
x = 1.01
y = 111
x * (y + 1) = 1.01 * 1000 = 1010 (this is the exact result; no rounding occurs at any step)
x * y + x = 1000.11 + 1.01 =r 1000 + 1.01 = 1001.01 =r 1000 (with rounding towards zero)
The example relies on rounding towards zero at least in the second step.
Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=98578
Reviewers: RKSimon, tstellarAMD, spatel, arsenm
Subscribers: wdng, llvm-commits
Differential Revision: https://reviews.llvm.org/D26602
llvm-svn: 288506
Summary: They are currently being parsed as %f14, %f16, and %f18.
Reviewers: venkatra, jyknight
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D27342
llvm-svn: 288503
When trying to vectorize trees that start at insertelement instructions
function tryToVectorizeList() uses vectorization factor calculated as
MinVecRegSize/ScalarTypeSize. But sometimes it does not work as tree
cost for this fixed vectorization factor is too high.
Patch tries to improve the situation. It tries different vectorization
factors from max(PowerOf2Floor(NumberOfVectorizedValues),
MinVecRegSize/ScalarTypeSize) to MinVecRegSize/ScalarTypeSize and tries
to choose the best one.
Differential Revision: https://reviews.llvm.org/D27215
llvm-svn: 288497
getTargetConstantBitsFromNode currently only extracts constant pool vector data, but it will need to be generalized to support broadcast and scalar constant pool data as well.
Converted Constant bit extraction and Bitset splitting to helper lambda functions.
llvm-svn: 288496
Now that PointerType is no longer a SequentialType, all SequentialTypes
have an associated number of elements, so we can move that information to
the base class, allowing for a number of simplifications.
Differential Revision: https://reviews.llvm.org/D27122
llvm-svn: 288464
As proposed on llvm-dev:
http://lists.llvm.org/pipermail/llvm-dev/2016-October/106640.html
This is for a couple of reasons:
- Values of type PointerType are unlike the other SequentialTypes (arrays
and vectors) in that they do not hold values of the element type. By moving
PointerType we can unify certain aspects of how the other SequentialTypes
are handled.
- PointerType will have no place in the SequentialType hierarchy once
pointee types are removed, so this is a necessary step towards removing
pointee types.
Differential Revision: https://reviews.llvm.org/D26595
llvm-svn: 288462
Instead, expose whether the current type is an array or a struct, if an array
what the upper bound is, and if a struct the struct type itself. This is
in preparation for a later change which will make PointerType derive from
Type rather than SequentialType.
Differential Revision: https://reviews.llvm.org/D26594
llvm-svn: 288458
In r266692, we made it possible to emit linkage names for just inlined
functions, putting the attribute on the abstract origin. Make sure we
don't think the linkage-name was already emitted on a declaration.
Differential Revision: http://reviews.llvm.org/D27320
llvm-svn: 288450
Summary:
We were doing an optimization in the ThinLTO backends of importing
constant unnamed_addr globals unconditionally as a local copy (regardless
of whether the thin link decided to import them). This should be done in
the thin link instead, so that resulting exported references are marked
and promoted appropriately, but will need a summary enhancement to mark
these variables as constant unnamed_addr.
The function import logic during the thin link was trying to handle
this proactively, by conservatively marking all values referenced in
the initializer lists of exported global variables as also exported.
However, this only handled values referenced directly from the
initializer list of an exported global variable. If the value is itself
a constant unnamed_addr variable, we could end up exporting its
references as well. This caused multiple issues. The first is that the
transitively exported references weren't promoted. Secondly, some could
not be promoted/renamed (e.g. they had a section or other constraint).
recursively, instead of just adding the first level of initializer list
references to the ExportList directly.
Remove this optimization and the associated handling in the function
import backend. SPEC measurements indicate we weren't getting much
from it in any case.
Fixes PR31052.
Reviewers: mehdi_amini
Subscribers: krasin, llvm-commits
Differential Revision: https://reviews.llvm.org/D26880
llvm-svn: 288446
Since the spill is for the whole wave, these
don't have the swizzling problems that vector stores do
and a single 4-byte allocation is enough to spill a 64 element
register. This should reduce the number of spill instructions and
put all the spills for a register in the same cacheline.
This should save allocated private size, but for now it doesn't.
The extra slots are allocated for each component, but never used
because the frame layout is essentially finalized before frame
indices are replaced. For always using the scalar store path,
this should probably be moved into processFunctionBeforeFrameFinalized.
llvm-svn: 288445
This prevents erratic stepping behavior as well as incorrect source attribution
for sample profiling.
Reviewers: dblakie
Subscribers: llvm-commit
Differential Revision: https://reviews.llvm.org/D27290
llvm-svn: 288442
This SmallVector is using up 128 bytes on the stack every time despite
almost always being empty[1], and since this function can recurse quite
deeply that adds up to a lot of overhead. We've seen this run afoul of
ulimits in some cases with ASAN on.
Replacing the SmallVector with a std::vector trades an occasional heap
allocation for vastly less stack usage.
[1]: I gathered some stats on an internal test suite and the vector
was non-empty in only 45,000 of 10,000,000 calls to this function.
llvm-svn: 288441
Summary:
Make AArch64InstrInfo::foldMemoryOperandImpl more general by folding all
full COPYs between register classes of the same size that are either
spilled or refilled.
Reviewers: MatzeB, qcolombet
Subscribers: aemerson, rengolin, mcrosier, llvm-commits
Differential Revision: https://reviews.llvm.org/D27271
llvm-svn: 288439
Move the cast<MCSymbolELF> inside emitELFSize, so that:
- it's done in one place instead of at each call
- it's more consistent with similar functions like EmitCOFFSafeSEH
- ambiguity between cast<> and dyn_cast<> is avoided (which also
eliminates an unnecessary dyn_cast call)
This also makes it easier to experiment with using ".size" directives on
non-ELF targets.
llvm-svn: 288437
Summary:
This patch fixes comparison of 64-bit atomic with its expected value in CMP_SWAP_64 expansion.
Currently, the low words are compared with CMP, while the high words are compared with SBC. SBC expects the carry flag to be set if CMP detects a difference. CMP might leave the carry unset for unequal arguments though if the first one is >= than the second. This might cause the comparison logic to detect false equality.
Example of the broken C++ code:
```
std::atomic<long long> at(2);
long long ll = 1;
std::atomic_compare_exchange_strong(&at, &ll, 3);
```
Even though the atomic `at` and the expected value `ll` are not equal and `atomic_compare_exchange_strong` returns `false`, `at` is changed to 3.
The patch replaces SBC with CMPEQ.
Reviewers: t.p.northover
Subscribers: aemerson, rengolin, llvm-commits, asl
Differential Revision: https://reviews.llvm.org/D27315
llvm-svn: 288433
The coalescer eliminates copies from reserved registers of the form:
%vregX = COPY %rY
in the case where %rY is a reserved register. However this turns out to
be invalid if only some of the subregisters are reserved (see also
https://reviews.llvm.org/D26648).
Differential Revision: https://reviews.llvm.org/D26687
llvm-svn: 288428
This time the issue is fortunately just a simple mistake rather than a horrible
design spectre. I thought SUBS/SBCS provided sufficient NZCV flags for
comparing two 64-bit values, but they don't.
The fix is slightly clunkier in AArch64 because we can't use conditional
execution to emit a pair of CMPs. Traditionally an "icmp ne i128" would map to
an EOR/EOR/ORR/CBNZ, but that uses more registers so it's easier to go with a
CSET/CINC/CBNZ combination. Slightly less efficient, but this is -O0 anyway.
Thanks to Anton Korobeynikov for pointing out the issue.
llvm-svn: 288418
The instcombine code which folds loads and stores into their use types can trip up if the use is a bitcast to a type which we can't directly load or store in the IR. In principle, such types shouldn't exist, but in practice they do today. This is a workaround to avoid a bug while we work towards the long term goal.
Differential Revision: https://reviews.llvm.org/D24365
llvm-svn: 288415
This just extracts out the transfer rules for constant ranges into a single shared point. As it happens, neither bit of code actually overlaps in terms of the handled operators, but with this change that could easily be tweaked in the future.
I also want to have this separated out to make experimenting with a eager value info implementation and possibly a ValueTracking-like fixed depth recursion peephole version. There's no reason all four of these can't share a common implementation which reduces the chances of bugs.
Differential Revision: https://reviews.llvm.org/D27294
llvm-svn: 288413
When trying to vectorize trees that start at insertelement instructions
function tryToVectorizeList() uses vectorization factor calculated as
MinVecRegSize/ScalarTypeSize. But sometimes it does not work as tree
cost for this fixed vectorization factor is too high.
Patch tries to improve the situation. It tries different vectorization
factors from max(PowerOf2Floor(NumberOfVectorizedValues),
MinVecRegSize/ScalarTypeSize) to MinVecRegSize/ScalarTypeSize and tries
to choose the best one.
Differential Revision: https://reviews.llvm.org/D27215
llvm-svn: 288412
Recommitting r288293 with some extra fixes for GlobalISel code.
Most of the exception handling members in MachineModuleInfo is actually
per function data (talks about the "current function") so it is better
to keep it at the function instead of the module.
This is a necessary step to have machine module passes work properly.
Also:
- Rename TidyLandingPads() to tidyLandingPads()
- Use doxygen member groups instead of "//===- EH ---"... so it is clear
where a group ends.
- I had to add an ugly const_cast at two places in the AsmPrinter
because the available MachineFunction pointers are const, but the code
wants to call tidyLandingPads() in between
(markFunctionEnd()/endFunction()).
Differential Revision: https://reviews.llvm.org/D27227
llvm-svn: 288405
The DIEUnit class represents a compile or type unit and it owns the unit DIE as an instance variable. This allows anyone with a DIE, to get the unit DIE, and then get back to its DIEUnit without adding any new ivars to the DIE class. Why was this needed? The DIE class has an Offset that is always the CU relative DIE offset, not the "offset in debug info section" as was commented in the header file (the comment has been corrected). This is great for performance because most DIE references are compile unit relative and this means most code that accessed the DIE's offset didn't need to make it into a compile unit relative offset because it already was. When we needed to emit a DW_FORM_ref_addr though, we needed to find the absolute offset of the DIE by finding the DIE's compile/type unit. This class did have the absolute debug info/type offset and could be added to the CU relative offset to compute the absolute offset. With this change we can easily get back to a DIE's DIEUnit which will have this needed offset. Prior to this is required having a DwarfDebug and required calling:
DwarfCompileUnit *DwarfDebug::lookupUnit(const DIE *CU) const;
Now we can use the DIEUnit class to do so without needing DwarfDebug. All clients now use DIEUnit objects (the DwarfDebug stack and the DwarfLinker). A follow on patch for the DWARF generator will also take advantage of this.
Differential Revision: https://reviews.llvm.org/D27170
llvm-svn: 288399
Currently when cost of scalar operations is evaluated the vector type is
used for scalar operations. Patch fixes this issue and fixes evaluation
of the vector operations cost.
Several test showed that vector cost model is too optimistic. It
allowed vectorization of 8 or less add/fadd operations, though scalar
code is faster. Actually, only for 16 or more operations vector code
provides better performance.
Differential Revision: https://reviews.llvm.org/D26277
llvm-svn: 288398
Summary:
Changes to llvm-mc to move common logic to separate function.
Related clang patch: https://reviews.llvm.org/D26213
Reviewers: rafael, t.p.northover, colinl, echristo, rengolin
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D26214
llvm-svn: 288396
[recommitting after the fix in r288307]
This requires some changes to the opt-diag API. Hal and I have
discussed this at the Dev Meeting and came up with a streaming delimiter
(setExtraArgs) to solve this.
Arguments after this delimiter are only included in the optimization
records and not in the remarks printed in the compiler output. (Note,
how in the test the content of the YAML file changes but the remarks on
the compiler output don't.)
This implements the green GVN message with a bug fix at line
http://lab.llvm.org:8080/artifacts/opt-view_test-suite/build/SingleSource/Benchmarks/Dhrystone/CMakeFiles/dry.dir/html/_org_test-suite_SingleSource_Benchmarks_Dhrystone_dry.c.html#L446
The fix is that now we properly include the constant value in the
message: "load of type i32 eliminated in favor of 7"
Differential Revision: https://reviews.llvm.org/D26489
llvm-svn: 288380
Now that we have fixups that only fill parts of a byte, it turns
out we have to mask off the bits outside the fixup area when
applying them. Failing to do so caused invalid object code to
be emitted for bprp with a negative 12-bit displacement.
llvm-svn: 288374
not all lakemont MCU support long nop.
we can't assume we can generate long nop by default for MCU.
Differential Revision: https://reviews.llvm.org/D26895
llvm-svn: 288363
This allows us to remove a few uses of IRObjectFile::getSymbolGV() in
llvm-nm.
While here change host-dependent logic in llvm-nm to target-dependent
logic.
Differential Revision: https://reviews.llvm.org/D27075
llvm-svn: 288320
This class represents a symbol table built from in-memory IR. It provides
access to GlobalValues and should only be used if such access is required
(e.g. in the LTO implementation). We will eventually change IRObjectFile
to read from a bitcode symbol table rather than using ModuleSymbolTable,
so it would not be able to expose the module.
Differential Revision: https://reviews.llvm.org/D27073
llvm-svn: 288319
This is no longer the recommended way to load modules for importing, so it should not be public API.
Differential Revision: https://reviews.llvm.org/D27292
llvm-svn: 288316
The assertions were wrong; we need to call getEncodingData() on the element,
not the array. While here, simplify the skipRecord() implementation for Fixed
and Char6 arrays. This is tested by the code I added to llvm-bcanalyzer
which makes sure that we can skip any record.
Differential Revision: https://reviews.llvm.org/D27241
llvm-svn: 288315
If LoopInfo is available during GVN, BasicAA will use it. However
MergeBlockIntoPredecessor does not update LI as it merges blocks.
This didn't use to cause problems because LI was freed before
GVN/BasicAA. Now with OptimizationRemarkEmitter, the lifetime of LI is
extended so LI needs to be kept up-to-date during GVN.
Differential Revision: https://reviews.llvm.org/D27288
llvm-svn: 288307
Summary:
it's often the case when the rules in the SpecialCaseList
are of the form hel.o*bar. That gives us a chance to build
trigram index to quickly discard 99% of inputs without
running a full regex. A similar idea was used in Google Code Search
as described in the blog post:
https://swtch.com/~rsc/regexp/regexp4.html
The check is defeated, if there's at least one regex
more complicated than that. In this case, all inputs
will go through the regex. That said, the real-world
rules are often simple or can be simplied. That considerably
speeds up compiling Chromium with CFI and UBSan.
As measured on Chromium's content_message_generator.cc:
before, CFI: 44 s
after, CFI: 23 s
after, CFI, no blacklist: 23 s (~1% slower, but 3 runs were unable to show the difference)
after, regular compilation to bitcode: 23 s
Reviewers: pcc
Subscribers: mgorny, llvm-commits
Differential Revision: https://reviews.llvm.org/D27188
llvm-svn: 288303
Support a new assembler directive, .import_global, to declare imported
global variables (i.e. those with external linkage and no
initializer). The linker turns these into wasm imports.
Patch by Jacob Gravelle
Differential Revision: https://reviews.llvm.org/D26875
llvm-svn: 288296
Most of the exception handling members in MachineModuleInfo is actually
per function data (talks about the "current function") so it is better
to keep it at the function instead of the module.
This is a necessary step to have machine module passes work properly.
Also:
- Rename TidyLandingPads() to tidyLandingPads()
- Use doxygen member groups instead of "//===- EH ---"... so it is clear
where a group ends.
- I had to add an ugly const_cast at two places in the AsmPrinter
because the available MachineFunction pointers are const, but the code
wants to call tidyLandingPads() in between
(markFunctionEnd()/endFunction()).
Differential Revision: https://reviews.llvm.org/D27227
llvm-svn: 288293
VariableDbgInfo is per function data, so it makes sense to have it with
the function instead of the module.
This is a necessary step to have machine module passes work properly.
Differential Revision: https://reviews.llvm.org/D27186
llvm-svn: 288292
This is per function data so it is better kept at the function instead
of the module.
This is a necessary step to have machine module passes work properly.
Differential Revision: https://reviews.llvm.org/D27185
llvm-svn: 288291
Choosing a "cfi" name makes the intend a bit clearer in an assembly dump
and more importantly the assembly dumps are slightly more stable as the
numbers don't move around anymore when unrelated code calls
createTempSymbol() more or less often.
As they are temp labels the name doesn't influence the generated object
code.
Differential Revision: https://reviews.llvm.org/D27244
llvm-svn: 288290
The LLDB tests are now ready for this patch.
DWARF specifies that "line 0" really means "no appropriate source
location" in the line table. Use this for branch targets and some
other cases that have no specified source location, to prevent
inheriting unfortunate line numbers from physically preceding
instructions (which might be from completely unrelated source).
Differential Revision: http://reviews.llvm.org/D24180
llvm-svn: 288283
Summary:
When using thin archives, and processing the same archive multiple times, we were mangling existing entries. The root cause is that we were calling computeRelativePath() more than once. Here, we only call it when adding new members to an archive.
Note that D27218 changes the way thin archives are printed, and will break the new unit test included here. Depending on which one lands first, the other will need to be slightly modified.
Reviewers: rafael, davide
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D27217
llvm-svn: 288280
Summary:
This is preparation for ThunderX processors that have Large
System Extension (LSE) atomic instructions, but not the
other instructions introduced by V8.1a.
This will mimic changes to GCC as described here:
https://gcc.gnu.org/ml/gcc-patches/2015-06/msg00388.html
LSE instructions are: LD/ST<op>, CAS*, SWP
Reviewers: t.p.northover, echristo, jmolloy, rengolin
Subscribers: aemerson, mehdi_amini
Differential Revision: https://reviews.llvm.org/D26621
llvm-svn: 288279
Summary:
Fix a case when first register in a search has maximum
RegUses.getUsedByIndices(Reg).count()
Reviewers: qcolombet
Differential Revision: http://reviews.llvm.org/D26877
From: Evgeny Stupachenko <evstupac@gmail.com>
llvm-svn: 288278
No test case necessary as the problematic condition is checked with the
newly introduced assertAllSuperRegsMarked() function.
Differential Revision: https://reviews.llvm.org/D26648
llvm-svn: 288277
This patch moves some posix specific file i/o code into a new
file, FuzzerIOPosix.cpp, and provides implementations for these
functions on Windows in FuzzerIOWindows.cpp. This is another
incremental step towards getting libfuzzer working on Windows,
although it still should not be expected to be fully working.
Patch by Marcos Pividori
Differential Revision: https://reviews.llvm.org/D27233
llvm-svn: 288275
This implements PGO-driven loop peeling.
The basic idea is that when the average dynamic trip-count of a loop is known,
based on PGO, to be low, we can expect a performance win by peeling off the
first several iterations of that loop.
Unlike unrolling based on a known trip count, or a trip count multiple, this
doesn't save us the conditional check and branch on each iteration. However,
it does allow us to simplify the straight-line code we get (constant-folding,
etc.). This is important given that we know that we will usually only hit this
code, and not the actual loop.
This is currently disabled by default.
Differential Revision: https://reviews.llvm.org/D25963
llvm-svn: 288274
In an effort to get libfuzzer working on Windows, we need to make
a distinction between what functions require platform specific
code (e.g. different code on Windows vs Linux) and what code
doesn't. IO functions, for example, tend to be platform
specific.
This patch separates out some of the functions which will need
to have platform specific implementations into different headers,
so that we can then provide different implementations for each
platform.
Aside from that, this patch contains no functional change. It
is purely a re-organization.
Patch by Marcos Pividori
Differential Revision: https://reviews.llvm.org/D27230
llvm-svn: 288264
Summary:
When computing useful bits for a BFM instruction, we need
to take into consideration the case where both operands
of the BFM are equal and provide data that we need to track.
Not doing this can cause us to miss useful bits.
Fixes PR31138 (https://llvm.org/bugs/show_bug.cgi?id=31138)
Reviewers: t.p.northover, jmolloy
Subscribers: evandro, gberry, srhines, pirama, mcrosier, aemerson, llvm-commits, rengolin
Differential Revision: https://reviews.llvm.org/D27130
llvm-svn: 288253
This is the first part of an effort to add wasm binary
support across all llvm tools.
Patch by Sam Clegg
Differential Revision: https://reviews.llvm.org/D26172
llvm-svn: 288251
Initial support for target shuffle constant folding in cases where all shuffle inputs are constant. We may be able to relax this and merge shuffles with only some constant inputs in the future.
I've added the helper function getTargetConstantBitsFromNode (based off a similar function in X86ShuffleDecodeConstantPool.cpp) that could be reused for other cases requiring constant vector extraction.
Differential Revision: https://reviews.llvm.org/D27220
llvm-svn: 288250
This is the beginning of an effort to get libfuzzer working on
Windows. This is a NFC to just add some macros for platform
detection on Windows.
Patch by Marcos Pividori
Differential Revision: https://reviews.llvm.org/D27229
llvm-svn: 288249
Summary: Further preparation for the expansion of MUL_LOHI added in D24956.
Reviewers: efriedma, RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D27064
llvm-svn: 288248
Summary:
The usage was previously guarded by HAVE_DLFCN. This breaks on Android with
LLVM_BUILD_STATIC as the platform does not provide a static version of libdl.
Using HAVE_DLOPEN fixes it as the code will only get used if we are actually able
to link an executable using dlopen.
Reviewers: rafael, beanz
Subscribers: tberghammer, danalbert, llvm-commits
Differential Revision: https://reviews.llvm.org/D26504
llvm-svn: 288246
This patch corresponds to review:
https://reviews.llvm.org/D26023
This patch adds support for converting a vector of loads into a single load if
the loads are consecutive (in either direction).
llvm-svn: 288219
This patch corresponds to review:
https://reviews.llvm.org/D25980
This is the 2nd patch in a series of 4 that improve the lowering and combining
for BUILD_VECTOR nodes on PowerPC. This particular patch combines a build vector
of fp-to-int conversions into an fp-to-int conversion of a build vector of fp
values. For example:
Converts (build_vector (fp_to_[su]i $A), (fp_to_[su]i $B), ...)
Into (fp_to_[su]i (build_vector $A, $B, ...))).
Which is a natural match for much cleaner code.
llvm-svn: 288218
Summary: Previously 0 and -1 was matched via tablegen rules. But this could cause problems where a physical register was being used where a virtual register was expected (seen in optimizeSelect and TwoAddressInstructionPass). Instead follow AArch64 and match in DAGToDAGISel.
Reviewers: eliben, majnemer
Subscribers: llvm-commits, aemerson
Differential Revision: https://reviews.llvm.org/D27171
llvm-svn: 288215
This commit caused some miscompiles that did not show up on any of the bots.
Reverting until we can investigate the cause of those failures.
llvm-svn: 288214
DWARF specifies that "line 0" really means "no appropriate source
location" in the line table. Use this for branch targets and some
other cases that have no specified source location, to prevent
inheriting unfortunate line numbers from physically preceding
instructions (which might be from completely unrelated source).
Differential Revision: http://reviews.llvm.org/D24180
llvm-svn: 288212
Michel Dänzer reported that r288051, "[StructurizeCFG] Use range-based
for loops", introduced a bug into rebuildSSA, wherein we were iterating
over an instruction's use list while modifying it, without taking care
to do this correctly.
llvm-svn: 288200
This interface allows clients to write multiple modules to a single
bitcode file. Also introduce the llvm-cat utility which can be used
to create a bitcode file containing multiple modules.
Differential Revision: https://reviews.llvm.org/D26179
llvm-svn: 288195
This is not in the list of valid inputs for the encoding.
When spilling, copies from exec can be folded directly
into the spill instruction which results in broken
stores.
This only fixes the operand constraints, more codegen
work is required to avoid emitting the invalid
spills.
This sort of breaks the dbg.value test. Because the
register class of the s_load_dwordx2 changes, there
is a copy to SReg_64, and the copy is the operand
of dbg_value. The copy is later dead, and removed
from the dbg_value.
llvm-svn: 288191
Summary:
The code in LiveRangeEdit::eliminateDeadDef() that computes isOrigDef
doesn't handle instructions in which operand 0 is not a def (e.g. KILL)
correctly. Add a check that operand 0 is a def before doing the rest of
the isOrigDef computation.
Reviewers: qcolombet, MatzeB, wmi
Subscribers: mcrosier, llvm-commits
Differential Revision: https://reviews.llvm.org/D27174
llvm-svn: 288189
Use vaddr/vdst for the same purposes.
This also fixes a beg in SIInsertWaits for the
operand check. The stored value operand is currently called
data0 in the single offset case, not data.
llvm-svn: 288188
It isn't generally safe to fold the frame index
directly into the operand since it will possibly
not be an inline immediate after it is expanded.
This surprisingly seems to produce better code, since
the FI doesn't prevent folding other immediate operands.
llvm-svn: 288185
Change the logic for when to fold immediates to
consider the destination operand rather than the
source of the materializing mov instruction.
No change yet, but this will allow for correctly handling
i16/f16 operands. Since 32-bit moves are used to materialize
constants for these, the same bitvalue will not be in the
register.
llvm-svn: 288184
Summary:
In AArch64InstrInfo::foldMemoryOperandImpl, catch more cases where the
COPY being spilled is copying from WZR/XZR, but the source register is
not in the COPY destination register's regclass.
For example, when spilling:
%vreg0 = COPY %XZR ; %vreg0:GPR64common
without this change, the code in TargetInstrInfo::foldMemoryOperand()
and canFoldCopy() that normally handles cases like this would fail to
optimize since %XZR is not in GPR64common. So the spill code generated
would be:
%vreg0 = COPY %XZR
STR %vreg
instead of the new code generated:
STR %XZR
Reviewers: qcolombet, MatzeB
Subscribers: mcrosier, aemerson, t.p.northover, llvm-commits, rengolin
Differential Revision: https://reviews.llvm.org/D26976
llvm-svn: 288176
The flag was introduced because the optimization controlled by the flag initially caused regressions. All the regressions were fixed some time ago and the flag has been false for quite a while.
llvm-svn: 288154
This patch corresponds to review:
https://reviews.llvm.org/D25912
This is the first patch in a series of 4 that improve the lowering and combining
for BUILD_VECTOR nodes on PowerPC.
llvm-svn: 288152
Enable scalar hoisting at -Oz as it is safe to hoist scalars to a place
where they are partially needed.
Differential Revision: https://reviews.llvm.org/D27111
llvm-svn: 288141
Currently SLP vectorizer tries to vectorize a binary operation and dies
immediately after unsuccessful the first unsuccessfull attempt. Patch
tries to improve the situation, trying to vectorize all binary
operations of all children nodes in the binop tree.
Differential Revision: https://reviews.llvm.org/D25517
llvm-svn: 288115
We now expect each module's identification block to appear immediately before
the module block. Any module block that appears without an identification block
immediately before it is interpreted as if it does not have a module block.
Also change the interpretation of VST and function offsets in bitcode.
The offset is always taken as relative to the start of the identification
(or module if not present) block, minus one word. This corresponds to the
historical interpretation of offsets, i.e. relative to the start of the file.
These changes allow for bitcode modules to be concatenated by copying bytes.
Differential Revision: https://reviews.llvm.org/D27184
llvm-svn: 288098
This way, when the linker adds padding between globals, we can skip over
the zero padding bytes and reliably find the start of the next metadata
global.
llvm-svn: 288096
It looks like this logic was duplicated long ago and the GCC side of
things has grown additional functionality. We need ${:uid} at least to
generate unique MS inline asm labels (PR23715), so expose these.
llvm-svn: 288092
Add the checking for both the MachO::fat_header and the
MachO::fat_arch struct values in the constructor for
MachOUniversalBinary. Such that when the constructor
for ObjectForArch is called it can assume the values in
the MachO::fat_arch for the offset and size are contained
in the file after the MachOUniversalBinary constructor
is called for the Parent.
llvm-svn: 288084
The macro LLVM_ENABLE_ABI_BREAKING_CHECKS is moved to a new header
abi-breaking.h, from llvm-config.h. Only headers that are using the
macro are including this new header.
LLVM will define a symbol, either EnableABIBreakingChecks or
DisableABIBreakingChecks depending on the configuration setting for
LLVM_ABI_BREAKING_CHECKS.
The abi-breaking.h header will add weak references to these symbols in
every clients that includes this header. This should ensure that
a mismatch triggers a link failure (or a load time failure for DSO).
On MSVC, the pragma "detect_mismatch" is used instead.
Differential Revision: https://reviews.llvm.org/D26876
llvm-svn: 288082
accept an Invalidator that allows them to invalidate themselves if their
dependencies are in turn invalidated.
Rather than recording the dependency graph ahead of time when analysis
get results from other analyses, this simply lets each result trigger
the immediate invalidation of any analyses they actually depend on. They
do this in a way that has three nice properties:
1) They don't have to handle transitive dependencies because the
infrastructure will recurse for them.
2) The invalidate methods are still called only once. We just
dynamically discover the necessary topological ordering, everything
is memoized nicely.
3) The infrastructure still provides a default implementation and can
access it so that only analyses which have dependencies need to do
anything custom.
To make this work at all, the invalidation logic also has to defer the
deletion of the result objects themselves so that they can remain alive
until we have collected the complete set of results to invalidate.
A unittest is added here that has exactly the dependency pattern we are
concerned with. It hit the use-after-free described by Sean in much
detail in the long thread about analysis invalidation before this
change, and even in an intermediate form of this change where we failed
to defer the deletion of the result objects.
There is an important problem with doing dependency invalidation that
*isn't* solved here: we don't *enforce* that results correctly
invalidate all the analyses whose results they depend on.
I actually looked at what it would take to do that, and it isn't as hard
as I had thought but the complexity it introduces seems very likely to
outweigh the benefit. The technique would be to provide a base class for
an analysis result that would be populated with other results, and
automatically provide the invalidate method which immediately does the
correct thing. This approach has some nice pros IMO:
- Handles the case we care about and nothing else: only *results*
that depend on other analyses trigger extra invalidation.
- Localized to the result rather than centralized in the analysis
manager.
- Ties the storage of the reference to another result to the triggering
of the invalidation of that analysis.
- Still supports extending invalidation in customized ways.
But the down sides here are:
- Very heavy-weight meta-programming is needed to provide this base
class.
- Requires a pretty awful API for accessing the dependencies.
Ultimately, I fear it will not pull its weight. But we can re-evaluate
this at any point if we start discovering consistent problems where the
invalidation and dependencies get out of sync. It will fit as a clean
layer on top of the facilities in this patch that we can add if and when
we need it.
Note that I'm not really thrilled with the names for these APIs... The
name "Invalidator" seems ok but not great. The method name "invalidate"
also. In review some improvements were suggested, but they really need
*other* uses of these terms to be updated as well so I'm going to do
that in a follow-up commit.
I'm working on the actual fixes to various analyses that need to use
these, but I want to try to get tests for each of them so we don't
regress. And those changes are seperable and obvious so once this goes
in I should be able to roll them out throughout LLVM.
Many thanks to Sean, Justin, and others for help reviewing here.
Differential Revision: https://reviews.llvm.org/D23738
llvm-svn: 288077
Preserving lifetime markers isn't as important as allowing promotion,
so just drop the lifetime markers if necessary.
This also fixes an assertion failure where other parts of SROA assumed
that lifetime markers never block promotion.
Fixes https://llvm.org/bugs/show_bug.cgi?id=29139.
Differential Revision: https://reviews.llvm.org/D24854
llvm-svn: 288074
Some scanner errors were not checked and reported by the parser.
Fix PR30934. Recommit r288014 after fixing unittest.
Patch by: Serge Guelton <serge.guelton@telecom-bretagne.eu>
Differential Revision: https://reviews.llvm.org/D26419
llvm-svn: 288071
This makes the createGenericSchedLive() function that constructs the
default scheduler available for the public API. This should help when
you want to get a scheduler and the default list of DAG mutations.
This also shrinks the list of default DAG mutations:
{Load|Store}ClusterDAGMutation and MacroFusionDAGMutation are no longer
added by default. Targets can easily add them if they need them. It also
makes it easier for targets to add alternative/custom macrofusion or
clustering mutations while staying with the default
createGenericSchedLive(). It also saves the callback back and forth in
TargetInstrInfo::enableClusterLoads()/enableClusterStores().
Differential Revision: https://reviews.llvm.org/D26986
llvm-svn: 288057
Codegen prepare sinks comparisons close to a user is we have only one register
for conditions. For AMDGPU we have many SGPRs capable to hold vector conditions.
Changed BE to report we have many condition registers. That way IR LICM pass
would hoist an invariant comparison out of a loop and codegen prepare will not
sink it.
With that done a condition is calculated in one block and used in another.
Current behavior is to store workitem's condition in a VGPR using v_cndmask_b32
and then restore it with yet another v_cmp instruction from that v_cndmask's
result. To mitigate the issue a propagation of source SGPR pair in place of v_cmp
is implemented. Additional side effect of this is that we may consume less VGPRs
at a cost of more SGPRs in case if holding of multiple conditions is needed, and
that is a clear win in most cases.
Differential Revision: https://reviews.llvm.org/D26114
llvm-svn: 288053
Summary:
As far as I can tell, doing our own computations in
NearestCommonDominator is a false optimization -- DomTree will build up
what appears to be exactly this data when it decides it's worthwhile.
Moreover, by building the cache ourselves, we cannot take advantage of
the cache that the domtree might have available.
In addition, I am not convinced of the correctness of the original code.
In particular, setting ResultIndex = 1 on the first addBlock instead of
setting it to 0 is quite fishy. Similarly, it's not clear to me that
setting IndexMap[Node] = 0 for every node as we walk up the tree finding
a common parent is correct. But rather than ponder over these
questions, I'd rather just make the code do the obviously-correct thing.
This patch also changes the NearestCommonDominator API a bit, improving
the names and getting rid of the boolean parameter in addBlock -- see
http://jlebar.com/2011/12/16/Boolean_parameters_to_API_functions_considered_harmful..html
Reviewers: arsenm
Subscribers: aemerson, wdng, llvm-commits
Differential Revision: https://reviews.llvm.org/D26998
llvm-svn: 288050
Bit-shifts by a whole number of bytes can be represented as a shuffle mask suitable for combining.
Added a 'getFauxShuffleMask' function to allow us to create shuffle masks from other suitable operations.
llvm-svn: 288040
This adds assembler support for the instructions provided by the
execution-hint facility (NIAI and BP(R)P). This required adding
support for the new relocation types for 12-bit and 24-bit PC-
relative offsets used by the BP(R)P instructions.
llvm-svn: 288031
This patch adds assembler support for the remaining branch instructions:
the non-relative branch on count variants, and all variants of branch
on index.
The only one of those that can be readily exploited for code generation
is BRCTH (branch on count using a high 32-bit register as count). Do
use it, however, it is necessary to also introduce a hew CHIMux pseudo
to allow comparisons of a 32-bit value agains a short immediate to go
into a high register as well (implemented via CHI/CIH).
This causes a bit of codegen changes overall, but those have proven to
be neutral (or even beneficial) in performance measurements.
llvm-svn: 288029
This patch moves formation of LOC-type instructions from (late)
IfConversion to the early if-conversion pass, and in some cases
additionally creates them directly from select instructions
during DAG instruction selection.
To make early if-conversion work, the patch implements the
canInsertSelect / insertSelect callbacks. It also implements
the commuteInstructionImpl and FoldImmediate callbacks to
enable generation of the full range of LOC instructions.
Finally, the patch adds support for all instructions of the
load-store-on-condition-2 facility, which allows using LOC
instructions also for high registers.
Due to the use of the GRX32 register class to enable high registers,
we now also have to handle the cases where there are still no single
hardware instructions (conditional move from a low register to a high
register or vice versa). These are converted back to a branch sequence
after register allocation. Since the expandRAPseudos callback is not
allowed to create new basic blocks, this requires a simple new pass,
modelled after the ARM/AArch64 ExpandPseudos pass.
Overall, this patch causes significantly more LOC-type instructions
to be used, and results in a measurable performance improvement.
llvm-svn: 288028
This never made a lot of sense. They've been invalidated for one IR unit
but they aren't really preserved in any normal sense. It seemed like it
would be an elegant way of communicating to outer IR units that pass
managers and adaptors had already handled invalidation, but we've since
ended up adding sets that model this more clearly: we're now using
the 'AllAnalysesOn<IRUnitT>' set to handle cases where the trick of
"preserving" invalidated analyses didn't work.
This patch moves to rely on that technique exclusively and removes the
cumbersome API aspect of updating the preserved set when doing
invalidation. This in turn will simplify a *number* of upcoming patches.
This has a side benefit of exposing a number of places where we were
failing to mark the 'AllAnalysesOn<IRUnitT>' set as preserved. This
patch fixes those, and with those fixes shouldn't change any observable
behavior.
llvm-svn: 288023
Some scanner errors were not checked and reported by the parser.
Fix PR30934
Patch by: Serge Guelton <serge.guelton@telecom-bretagne.eu>
Differential Revision: https://reviews.llvm.org/D26419
llvm-svn: 288014
I don't think isel selects these today, favoring adding the register to itself instead. But the load folding tables shouldn't be so concerned with what isel will use and just represent the relationships.
llvm-svn: 288007
Note that the non-splat lshr+lshr test folded, but that does not
work in general. Something is missing or wrong in computeKnownBits
as the non-splat shl+shl test still shows.
llvm-svn: 288005
If we were to unfold these, the load size would be increased to the register size. This is not safe to do since the enlarged load can do things like cross a page boundary into a page that doesn't exist.
I probably missed some instructions, but this should be a large portion of them.
llvm-svn: 288001
Most of these are the SSE4.1 PMOVZX/PMOVSX instructions which all read less than 128-bits. The only other was PMOVUPD which by definition is an unaligned load.
llvm-svn: 287991
Summary: When selectScalarSSELoad is looking for a scalar_to_vector of a scalar load, it makes sure the load is only used by the scalar_to_vector. But it doesn't make sure the scalar_to_vector is only used once. This can cause the same load to be folded multiple times. This can be bad for performance. This also causes the chain output to be duplicated, but not connected to anything so chain dependencies will not be satisfied.
Reviewers: RKSimon, zvi, delena, spatel
Subscribers: andreadb, llvm-commits
Differential Revision: https://reviews.llvm.org/D26790
llvm-svn: 287983
There are other spots where we can use this; we're currently dropping
metadata in some places, and there are proposed changes where we will
want to propagate metadata.
IRBuilder's CreateSelect() already has a parameter like this, so this
change makes the regular 'Create' API line up with that.
llvm-svn: 287976
The W bit distinquishes which operand is the memory operand. But if the mod bits are 3 then the memory operand is a register and there are two possible encodings. We already did this correctly for several other XOP instructions.
llvm-svn: 287961
Not sure this is truly needed but we had the floating point equivalents, the aligned equivalents, and the EVEX equivalents. So this just makes it complete.
llvm-svn: 287960
Summary:
Shuffle lowering may have widened the element size of a i32 shuffle to i64 before selecting X86ISD::SHUF128. If this shuffle was used by a vselect this can prevent us from selecting masked operations.
This patch detects this and changes the element size to match the vselect.
I don't handle changing integer to floating point or vice versa as its not clear if its better to push such a bitcast to the inputs of the shuffle or to the user of the vselect. So I'm ignoring that case for now.
Reviewers: delena, zvi, RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D27087
llvm-svn: 287939
Summary:
The iterative algorithm for Loop Unswitching may render some of the branches unreachable in the unswitched loops.
Given the exponential nature of the algorithm, this is quite an overhead.
This patch fixes this problem by selectively unswitching only those branches within a loop that are reachable from the loop header.
Reviewers: Michael Zolothukin, Anna Thomas, Weiming Zhao.
Subscribers: llvm-commits.
Differential Revision: http://reviews.llvm.org/D26299
llvm-svn: 287925
This patch corrects the behaviour of code such as:
.local foo
jal foo
foo:
to use the correct jal expansion when writing ELF files.
Patch by: Daniel Sanders
Reviewers: zoran.jovanovic, seanbruno, vkalintiris
Differential Revision: https://reviews.llvm.org/D24722
llvm-svn: 287918
Vectorize UINT_TO_FP v2i32 -> v2f64 instead of scalarization (albeit still on the SIMD unit).
The codegen matches that generated by legalization (and is in fact used by AVX for UINT_TO_FP v4i32 -> v4f64), but has to be done in the x86 backend to account for legalization via 4i32.
Differential Revision: https://reviews.llvm.org/D26938
llvm-svn: 287886
The bug arises during register allocation on i686 for
CMPXCHG8B instruction when base pointer is needed. CMPXCHG8B
needs 4 implicit registers (EAX, EBX, ECX, EDX) and a memory address,
plus ESI is reserved as the base pointer. With such constraints the only
way register allocator would do its job successfully is when the addressing
mode of the instruction requires only one register. If that is not the case
- we are emitting additional LEA instruction to compute the address.
It fixes PR28755.
Patch by Alexander Ivchenko <alexander.ivchenko@intel.com>
Differential Revision: https://reviews.llvm.org/D25088
llvm-svn: 287875
Move the definitions of three variables out of the switch.
Patch by Alexander Ivchenko <alexander.ivchenko@intel.com>
Differential Revision: https://reviews.llvm.org/D25192
llvm-svn: 287874
- It does not modify the input instruction
- Second operand of any address is always an Index Register,
make sure we actually check for that, instead of a check for
an immediate value
Patch by Alexander Ivchenko <alexander.ivchenko@intel.com>
Differential Revision: https://reviews.llvm.org/D24938
llvm-svn: 287873