Summary: The code we use to read PDBs assumed that streams we ask it to read exist, and would read memory outside a vector and crash if this wasn't the case. This would, for example, cause llvm-pdbdump to crash on PDBs generated by lld. This patch handles such cases more gracefully: the PDB reading code in LLVM now reports errors when asked to get a stream that is not present, and llvm-pdbdump will report missing streams and continue processing streams that are present.
Reviewers: ruiu, zturner
Subscribers: thakis, amccarth
Differential Revision: https://reviews.llvm.org/D27325
llvm-svn: 288722
When the entry block was empty after arg lowering, we were always placing
constants at the end. This is probably hamrless while translating the same
block, but horribly wrong once its terminator has been translated. So switch to
inserting at the beginning.
llvm-svn: 288720
This makes it more similar to the floating-point constant, and also allows for
larger constants to be translated later. There's no real functional change in
this patch though, just syntax updates.
llvm-svn: 288712
Returning 0 (NoReg) from getOrCreateVReg leads to unexpected situations later
in the translation. It's better to return a valid (if undefined) register and
let the rest of the instruction carry on as planned.
llvm-svn: 288709
Summary:
If LAA expands a bound that is loop invariant, but not hoisted out
of the loop body, it used to use that value anyway, causing a
non-domination error, because the memcheck block is of course not
dominated by the scalar loop body. Detect this situation and expand
the SCEV expression instead.
Fixes PR31251
Reviewers: anemet
Subscribers: mzolotukhin, llvm-commits
Differential Revision: https://reviews.llvm.org/D27397
llvm-svn: 288705
This changes the scalar non-intrinsic non-avx roundss/sd instruction
definitions not to read their destination register - allowing partial dependency
breaking.
This fixes PR31143.
Differential Revision: https://reviews.llvm.org/D27323
llvm-svn: 288703
Structure the definitions a bit more like the other classes.
The main change here is to split EXP with the done bit set
to a separate opcode, so we can set mayLoad = 1 so that it won't
be reordered before the other exp stores, since this has the special
constraint that if the done bit is set then this should be the last
exp in she shader.
Previously all exp instructions were inferred to have unmodeled
side effects.
llvm-svn: 288695
so we can stop using DW_OP_bit_piece with the wrong semantics.
The entire back story can be found here:
http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20161114/405934.html
The gist is that in LLVM we've been misinterpreting DW_OP_bit_piece's
offset field to mean the offset into the source variable rather than
the offset into the location at the top the DWARF expression stack. In
order to be able to fix this in a subsequent patch, this patch
introduces a dedicated DW_OP_LLVM_fragment operation with the
semantics that we used to apply to DW_OP_bit_piece, which is what we
actually need while inside of LLVM. This patch is complete with a
bitcode upgrade for expressions using the old format. It does not yet
fix the DWARF backend to use DW_OP_bit_piece correctly.
Implementation note: We discussed several options for implementing
this, including reserving a dedicated field in DIExpression for the
fragment size and offset, but using an custom operator at the end of
the expression works just fine and is more efficient because we then
only pay for it when we need it.
Differential Revision: https://reviews.llvm.org/D27361
rdar://problem/29335809
llvm-svn: 288683
We treat bitwise 'not' as a special operation and try not to reduce its all-ones mask.
Presumably, this is because a 'not' may be cheaper than a generic 'xor' or it may get
folded into another logic op if the target has those. However, if we can remove a logic
instruction by changing the xor's constant mask value, that should always be a win.
Note that the IR version of SimplifyDemandedBits() does not treat 'not' as a special-case
currently (although that's marked with a FIXME). So if you run this IR through -instcombine,
you should get the same end result. I'm hoping to add a different backend transform that
will expose this problem though, so I need to solve this first.
Differential Revision: https://reviews.llvm.org/D27356
llvm-svn: 288676
Doing so changes the evaluation order for relocation composition.
Patch By: Daniel Sanders
Reviewers: vkalintiris, atanasyan
Differential Revision: https://reviews.llvm.org/D26401
llvm-svn: 288666
This function seems target-independent so far: all the target-specific behaviour
is isolated in the CCAssignFn and the ValueHandler (which we're also extracting
into the generic CallLowering).
The intention is to use this in the ARM backend.
Differential Revision: https://reviews.llvm.org/D27045
llvm-svn: 288658
This forces the code to call StringInit::get on the string early and
avoids storing duplicates in std::string and sometimes allows pointer
comparisons instead of string comparisons.
llvm-svn: 288642
Introduce new constructor for STRCONCAT binop with a shortcut that
immediately concatenates if the two arguments are StringInits.
Makes the QualifyName code more readable and tablegen 2-3% faster.
llvm-svn: 288639
This avoid an extra construction of a std::string (and a heap
allocation) when the caller only has a StringRef but no std::string at
hand.
llvm-svn: 288610
Changes all static helper functions in MachOObjectFile.cpp that expect a
non-null MachOObjectFile pointer to take a reference instead.
llvm-svn: 288608
lib/Target/AMDGPU/SIRegisterInfo.cpp: In member function 'void llvm::SIRegisterInfo::spillSGPR(llvm::MachineBasicBlock::iterator, int, llvm::RegScavenger*) const':
lib/Target/AMDGPU/SIRegisterInfo.cpp:572:30: warning: variable 'SubRC' set but not used [-Wunused-but-set-variable]
const TargetRegisterClass *SubRC = nullptr;
^
lib/Target/AMDGPU/SIRegisterInfo.cpp: In member function 'void llvm::SIRegisterInfo::restoreSGPR(llvm::MachineBasicBlock::iterator, int, llvm::RegScavenger*) const':
lib/Target/AMDGPU/SIRegisterInfo.cpp:723:30: warning: variable 'SubRC' set but not used [-Wunused-but-set-variable]
const TargetRegisterClass *SubRC = nullptr;
^
The variable was assigned to, but never used. The functions called did not
mutate state. Simplify the logic and remove the variable. Identified by gcc
5.4.0.
llvm-svn: 288601
This solves a secondary problem seen in PR6137:
https://llvm.org/bugs/show_bug.cgi?id=6137#c6
This is similar to the bitwise logic op fold added with:
https://reviews.llvm.org/rL287707
And like that patch, I'm artificially restricting the
transform from vector <-> scalar types until we're sure
that the backend can handle that.
llvm-svn: 288584
Previously this pass was using up to 5% compile time in some cases which
is a bit much for what it is doing. The pass featured a full blown
data-flow analysis which in the default configuration was restricted to a
single block.
This rewrites the pass under the assumption that we only ever work on a
single block. This is done in a single pass maintaining a state machine
per general purpose register to catch LOH patterns.
Differential Revision: https://reviews.llvm.org/D27329
llvm-svn: 288561
VSX has instructions lxsiwax/lxsdx that can load 32/64 bit value into VSX register cheaply. That patch makes it known to memory cost model, so the vectorization of the test case in pr30990 is beneficial.
Differential Revision: https://reviews.llvm.org/D26713
llvm-svn: 288560
Summary:
This is a follow up to r288303, where I have introduced TrigramIndex
to speed up SpecialCaseList for the cases when all rules are
simple wildcards, like *hello*wor.d*.
Here, I add support for escaping, so that it's possible to
specify rules like *c\+\+abi*.
Reviewers: pcc
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D27318
llvm-svn: 288553
This resubmits r288529, which was resubmitted because it broke a
fuzzer bot. According to kcc@ the test that broke was flakey
and it is unlikely to be a result of this patch.
llvm-svn: 288549
Summary: Implement custom lowering of SHL_PARTS to enable lowering of left shift with larger than 32-bit shifts.
Reviewers: eliben, majnemer
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D27232
llvm-svn: 288541
Windows doesn't really support weak aliases, but with some
linker magic we can get something that's pretty close on
Windows. This introduces an interface to accessing weakly
aliased symbols that will work on any platform. Linker
magic changes to come in a separate patch.
Patch by Marcos Pividori
Differential Revision: https://reviews.llvm.org/D27235
llvm-svn: 288530
Pave the way for separating out platform specific
utility functions into separate files.
Patch by Marcos Pividori
Differential Revision: https://reviews.llvm.org/D27234
llvm-svn: 288529
For -O0 there might be unreachable BBs, which breaks the assumption that all the
BBs have an auxiliary data structure. In this patch, we add another interface
called findBBInfo() so that a nullptr can be returned for the unreachable BBs
(and the callers can ignore those BBs).
This fixes the bug reported
https://llvm.org/bugs/show_bug.cgi?id=31209
Differential Revision: https://reviews.llvm.org/D27280
llvm-svn: 288528
Add assembler support for all atomic instructions that weren't already
supported. Some of those could be used to implement codegen for 128-bit
atomic operations, but this isn't done here yet.
llvm-svn: 288526
Add assembler support for instructions manipulating the FPC.
Also add codegen support via the GCC compatibility builtins:
__builtin_s390_sfpc
__builtin_s390_efpc
llvm-svn: 288525
Move setting of hasSideEffects out of SystemZInstrFormats.td,
to allow use of the format classes for instructions where this
flag shouldn't be set. NFC.
llvm-svn: 288524
This reverts commit r288497, as it broke the AArch64 build of Compiler-RT's
builtins (twice: once in r288412 and once in r288497). We should investigate
this offline.
llvm-svn: 288508
Summary:
When X = 0 and Y = inf, the original code produces inf, but the transformed
code produces nan. So this transform (and its relatives) should only be
used when the no-infs-fp-math flag is explicitly enabled.
Also disable the transform using fmad (intermediate rounding) when unsafe-math
is not enabled, since it can reduce the precision of the result; consider this
example with binary floating point numbers with two bits of mantissa:
x = 1.01
y = 111
x * (y + 1) = 1.01 * 1000 = 1010 (this is the exact result; no rounding occurs at any step)
x * y + x = 1000.11 + 1.01 =r 1000 + 1.01 = 1001.01 =r 1000 (with rounding towards zero)
The example relies on rounding towards zero at least in the second step.
Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=98578
Reviewers: RKSimon, tstellarAMD, spatel, arsenm
Subscribers: wdng, llvm-commits
Differential Revision: https://reviews.llvm.org/D26602
llvm-svn: 288506
Summary: They are currently being parsed as %f14, %f16, and %f18.
Reviewers: venkatra, jyknight
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D27342
llvm-svn: 288503
When trying to vectorize trees that start at insertelement instructions
function tryToVectorizeList() uses vectorization factor calculated as
MinVecRegSize/ScalarTypeSize. But sometimes it does not work as tree
cost for this fixed vectorization factor is too high.
Patch tries to improve the situation. It tries different vectorization
factors from max(PowerOf2Floor(NumberOfVectorizedValues),
MinVecRegSize/ScalarTypeSize) to MinVecRegSize/ScalarTypeSize and tries
to choose the best one.
Differential Revision: https://reviews.llvm.org/D27215
llvm-svn: 288497
getTargetConstantBitsFromNode currently only extracts constant pool vector data, but it will need to be generalized to support broadcast and scalar constant pool data as well.
Converted Constant bit extraction and Bitset splitting to helper lambda functions.
llvm-svn: 288496
Now that PointerType is no longer a SequentialType, all SequentialTypes
have an associated number of elements, so we can move that information to
the base class, allowing for a number of simplifications.
Differential Revision: https://reviews.llvm.org/D27122
llvm-svn: 288464
As proposed on llvm-dev:
http://lists.llvm.org/pipermail/llvm-dev/2016-October/106640.html
This is for a couple of reasons:
- Values of type PointerType are unlike the other SequentialTypes (arrays
and vectors) in that they do not hold values of the element type. By moving
PointerType we can unify certain aspects of how the other SequentialTypes
are handled.
- PointerType will have no place in the SequentialType hierarchy once
pointee types are removed, so this is a necessary step towards removing
pointee types.
Differential Revision: https://reviews.llvm.org/D26595
llvm-svn: 288462
Instead, expose whether the current type is an array or a struct, if an array
what the upper bound is, and if a struct the struct type itself. This is
in preparation for a later change which will make PointerType derive from
Type rather than SequentialType.
Differential Revision: https://reviews.llvm.org/D26594
llvm-svn: 288458
In r266692, we made it possible to emit linkage names for just inlined
functions, putting the attribute on the abstract origin. Make sure we
don't think the linkage-name was already emitted on a declaration.
Differential Revision: http://reviews.llvm.org/D27320
llvm-svn: 288450
Summary:
We were doing an optimization in the ThinLTO backends of importing
constant unnamed_addr globals unconditionally as a local copy (regardless
of whether the thin link decided to import them). This should be done in
the thin link instead, so that resulting exported references are marked
and promoted appropriately, but will need a summary enhancement to mark
these variables as constant unnamed_addr.
The function import logic during the thin link was trying to handle
this proactively, by conservatively marking all values referenced in
the initializer lists of exported global variables as also exported.
However, this only handled values referenced directly from the
initializer list of an exported global variable. If the value is itself
a constant unnamed_addr variable, we could end up exporting its
references as well. This caused multiple issues. The first is that the
transitively exported references weren't promoted. Secondly, some could
not be promoted/renamed (e.g. they had a section or other constraint).
recursively, instead of just adding the first level of initializer list
references to the ExportList directly.
Remove this optimization and the associated handling in the function
import backend. SPEC measurements indicate we weren't getting much
from it in any case.
Fixes PR31052.
Reviewers: mehdi_amini
Subscribers: krasin, llvm-commits
Differential Revision: https://reviews.llvm.org/D26880
llvm-svn: 288446
Since the spill is for the whole wave, these
don't have the swizzling problems that vector stores do
and a single 4-byte allocation is enough to spill a 64 element
register. This should reduce the number of spill instructions and
put all the spills for a register in the same cacheline.
This should save allocated private size, but for now it doesn't.
The extra slots are allocated for each component, but never used
because the frame layout is essentially finalized before frame
indices are replaced. For always using the scalar store path,
this should probably be moved into processFunctionBeforeFrameFinalized.
llvm-svn: 288445
This prevents erratic stepping behavior as well as incorrect source attribution
for sample profiling.
Reviewers: dblakie
Subscribers: llvm-commit
Differential Revision: https://reviews.llvm.org/D27290
llvm-svn: 288442
This SmallVector is using up 128 bytes on the stack every time despite
almost always being empty[1], and since this function can recurse quite
deeply that adds up to a lot of overhead. We've seen this run afoul of
ulimits in some cases with ASAN on.
Replacing the SmallVector with a std::vector trades an occasional heap
allocation for vastly less stack usage.
[1]: I gathered some stats on an internal test suite and the vector
was non-empty in only 45,000 of 10,000,000 calls to this function.
llvm-svn: 288441
Summary:
Make AArch64InstrInfo::foldMemoryOperandImpl more general by folding all
full COPYs between register classes of the same size that are either
spilled or refilled.
Reviewers: MatzeB, qcolombet
Subscribers: aemerson, rengolin, mcrosier, llvm-commits
Differential Revision: https://reviews.llvm.org/D27271
llvm-svn: 288439
Move the cast<MCSymbolELF> inside emitELFSize, so that:
- it's done in one place instead of at each call
- it's more consistent with similar functions like EmitCOFFSafeSEH
- ambiguity between cast<> and dyn_cast<> is avoided (which also
eliminates an unnecessary dyn_cast call)
This also makes it easier to experiment with using ".size" directives on
non-ELF targets.
llvm-svn: 288437
Summary:
This patch fixes comparison of 64-bit atomic with its expected value in CMP_SWAP_64 expansion.
Currently, the low words are compared with CMP, while the high words are compared with SBC. SBC expects the carry flag to be set if CMP detects a difference. CMP might leave the carry unset for unequal arguments though if the first one is >= than the second. This might cause the comparison logic to detect false equality.
Example of the broken C++ code:
```
std::atomic<long long> at(2);
long long ll = 1;
std::atomic_compare_exchange_strong(&at, &ll, 3);
```
Even though the atomic `at` and the expected value `ll` are not equal and `atomic_compare_exchange_strong` returns `false`, `at` is changed to 3.
The patch replaces SBC with CMPEQ.
Reviewers: t.p.northover
Subscribers: aemerson, rengolin, llvm-commits, asl
Differential Revision: https://reviews.llvm.org/D27315
llvm-svn: 288433
The coalescer eliminates copies from reserved registers of the form:
%vregX = COPY %rY
in the case where %rY is a reserved register. However this turns out to
be invalid if only some of the subregisters are reserved (see also
https://reviews.llvm.org/D26648).
Differential Revision: https://reviews.llvm.org/D26687
llvm-svn: 288428
This time the issue is fortunately just a simple mistake rather than a horrible
design spectre. I thought SUBS/SBCS provided sufficient NZCV flags for
comparing two 64-bit values, but they don't.
The fix is slightly clunkier in AArch64 because we can't use conditional
execution to emit a pair of CMPs. Traditionally an "icmp ne i128" would map to
an EOR/EOR/ORR/CBNZ, but that uses more registers so it's easier to go with a
CSET/CINC/CBNZ combination. Slightly less efficient, but this is -O0 anyway.
Thanks to Anton Korobeynikov for pointing out the issue.
llvm-svn: 288418
The instcombine code which folds loads and stores into their use types can trip up if the use is a bitcast to a type which we can't directly load or store in the IR. In principle, such types shouldn't exist, but in practice they do today. This is a workaround to avoid a bug while we work towards the long term goal.
Differential Revision: https://reviews.llvm.org/D24365
llvm-svn: 288415
This just extracts out the transfer rules for constant ranges into a single shared point. As it happens, neither bit of code actually overlaps in terms of the handled operators, but with this change that could easily be tweaked in the future.
I also want to have this separated out to make experimenting with a eager value info implementation and possibly a ValueTracking-like fixed depth recursion peephole version. There's no reason all four of these can't share a common implementation which reduces the chances of bugs.
Differential Revision: https://reviews.llvm.org/D27294
llvm-svn: 288413
When trying to vectorize trees that start at insertelement instructions
function tryToVectorizeList() uses vectorization factor calculated as
MinVecRegSize/ScalarTypeSize. But sometimes it does not work as tree
cost for this fixed vectorization factor is too high.
Patch tries to improve the situation. It tries different vectorization
factors from max(PowerOf2Floor(NumberOfVectorizedValues),
MinVecRegSize/ScalarTypeSize) to MinVecRegSize/ScalarTypeSize and tries
to choose the best one.
Differential Revision: https://reviews.llvm.org/D27215
llvm-svn: 288412
Recommitting r288293 with some extra fixes for GlobalISel code.
Most of the exception handling members in MachineModuleInfo is actually
per function data (talks about the "current function") so it is better
to keep it at the function instead of the module.
This is a necessary step to have machine module passes work properly.
Also:
- Rename TidyLandingPads() to tidyLandingPads()
- Use doxygen member groups instead of "//===- EH ---"... so it is clear
where a group ends.
- I had to add an ugly const_cast at two places in the AsmPrinter
because the available MachineFunction pointers are const, but the code
wants to call tidyLandingPads() in between
(markFunctionEnd()/endFunction()).
Differential Revision: https://reviews.llvm.org/D27227
llvm-svn: 288405
The DIEUnit class represents a compile or type unit and it owns the unit DIE as an instance variable. This allows anyone with a DIE, to get the unit DIE, and then get back to its DIEUnit without adding any new ivars to the DIE class. Why was this needed? The DIE class has an Offset that is always the CU relative DIE offset, not the "offset in debug info section" as was commented in the header file (the comment has been corrected). This is great for performance because most DIE references are compile unit relative and this means most code that accessed the DIE's offset didn't need to make it into a compile unit relative offset because it already was. When we needed to emit a DW_FORM_ref_addr though, we needed to find the absolute offset of the DIE by finding the DIE's compile/type unit. This class did have the absolute debug info/type offset and could be added to the CU relative offset to compute the absolute offset. With this change we can easily get back to a DIE's DIEUnit which will have this needed offset. Prior to this is required having a DwarfDebug and required calling:
DwarfCompileUnit *DwarfDebug::lookupUnit(const DIE *CU) const;
Now we can use the DIEUnit class to do so without needing DwarfDebug. All clients now use DIEUnit objects (the DwarfDebug stack and the DwarfLinker). A follow on patch for the DWARF generator will also take advantage of this.
Differential Revision: https://reviews.llvm.org/D27170
llvm-svn: 288399
Currently when cost of scalar operations is evaluated the vector type is
used for scalar operations. Patch fixes this issue and fixes evaluation
of the vector operations cost.
Several test showed that vector cost model is too optimistic. It
allowed vectorization of 8 or less add/fadd operations, though scalar
code is faster. Actually, only for 16 or more operations vector code
provides better performance.
Differential Revision: https://reviews.llvm.org/D26277
llvm-svn: 288398
Summary:
Changes to llvm-mc to move common logic to separate function.
Related clang patch: https://reviews.llvm.org/D26213
Reviewers: rafael, t.p.northover, colinl, echristo, rengolin
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D26214
llvm-svn: 288396
[recommitting after the fix in r288307]
This requires some changes to the opt-diag API. Hal and I have
discussed this at the Dev Meeting and came up with a streaming delimiter
(setExtraArgs) to solve this.
Arguments after this delimiter are only included in the optimization
records and not in the remarks printed in the compiler output. (Note,
how in the test the content of the YAML file changes but the remarks on
the compiler output don't.)
This implements the green GVN message with a bug fix at line
http://lab.llvm.org:8080/artifacts/opt-view_test-suite/build/SingleSource/Benchmarks/Dhrystone/CMakeFiles/dry.dir/html/_org_test-suite_SingleSource_Benchmarks_Dhrystone_dry.c.html#L446
The fix is that now we properly include the constant value in the
message: "load of type i32 eliminated in favor of 7"
Differential Revision: https://reviews.llvm.org/D26489
llvm-svn: 288380
Now that we have fixups that only fill parts of a byte, it turns
out we have to mask off the bits outside the fixup area when
applying them. Failing to do so caused invalid object code to
be emitted for bprp with a negative 12-bit displacement.
llvm-svn: 288374
not all lakemont MCU support long nop.
we can't assume we can generate long nop by default for MCU.
Differential Revision: https://reviews.llvm.org/D26895
llvm-svn: 288363
This allows us to remove a few uses of IRObjectFile::getSymbolGV() in
llvm-nm.
While here change host-dependent logic in llvm-nm to target-dependent
logic.
Differential Revision: https://reviews.llvm.org/D27075
llvm-svn: 288320
This class represents a symbol table built from in-memory IR. It provides
access to GlobalValues and should only be used if such access is required
(e.g. in the LTO implementation). We will eventually change IRObjectFile
to read from a bitcode symbol table rather than using ModuleSymbolTable,
so it would not be able to expose the module.
Differential Revision: https://reviews.llvm.org/D27073
llvm-svn: 288319
This is no longer the recommended way to load modules for importing, so it should not be public API.
Differential Revision: https://reviews.llvm.org/D27292
llvm-svn: 288316
The assertions were wrong; we need to call getEncodingData() on the element,
not the array. While here, simplify the skipRecord() implementation for Fixed
and Char6 arrays. This is tested by the code I added to llvm-bcanalyzer
which makes sure that we can skip any record.
Differential Revision: https://reviews.llvm.org/D27241
llvm-svn: 288315
If LoopInfo is available during GVN, BasicAA will use it. However
MergeBlockIntoPredecessor does not update LI as it merges blocks.
This didn't use to cause problems because LI was freed before
GVN/BasicAA. Now with OptimizationRemarkEmitter, the lifetime of LI is
extended so LI needs to be kept up-to-date during GVN.
Differential Revision: https://reviews.llvm.org/D27288
llvm-svn: 288307
Summary:
it's often the case when the rules in the SpecialCaseList
are of the form hel.o*bar. That gives us a chance to build
trigram index to quickly discard 99% of inputs without
running a full regex. A similar idea was used in Google Code Search
as described in the blog post:
https://swtch.com/~rsc/regexp/regexp4.html
The check is defeated, if there's at least one regex
more complicated than that. In this case, all inputs
will go through the regex. That said, the real-world
rules are often simple or can be simplied. That considerably
speeds up compiling Chromium with CFI and UBSan.
As measured on Chromium's content_message_generator.cc:
before, CFI: 44 s
after, CFI: 23 s
after, CFI, no blacklist: 23 s (~1% slower, but 3 runs were unable to show the difference)
after, regular compilation to bitcode: 23 s
Reviewers: pcc
Subscribers: mgorny, llvm-commits
Differential Revision: https://reviews.llvm.org/D27188
llvm-svn: 288303
Support a new assembler directive, .import_global, to declare imported
global variables (i.e. those with external linkage and no
initializer). The linker turns these into wasm imports.
Patch by Jacob Gravelle
Differential Revision: https://reviews.llvm.org/D26875
llvm-svn: 288296
Most of the exception handling members in MachineModuleInfo is actually
per function data (talks about the "current function") so it is better
to keep it at the function instead of the module.
This is a necessary step to have machine module passes work properly.
Also:
- Rename TidyLandingPads() to tidyLandingPads()
- Use doxygen member groups instead of "//===- EH ---"... so it is clear
where a group ends.
- I had to add an ugly const_cast at two places in the AsmPrinter
because the available MachineFunction pointers are const, but the code
wants to call tidyLandingPads() in between
(markFunctionEnd()/endFunction()).
Differential Revision: https://reviews.llvm.org/D27227
llvm-svn: 288293
VariableDbgInfo is per function data, so it makes sense to have it with
the function instead of the module.
This is a necessary step to have machine module passes work properly.
Differential Revision: https://reviews.llvm.org/D27186
llvm-svn: 288292
This is per function data so it is better kept at the function instead
of the module.
This is a necessary step to have machine module passes work properly.
Differential Revision: https://reviews.llvm.org/D27185
llvm-svn: 288291
Choosing a "cfi" name makes the intend a bit clearer in an assembly dump
and more importantly the assembly dumps are slightly more stable as the
numbers don't move around anymore when unrelated code calls
createTempSymbol() more or less often.
As they are temp labels the name doesn't influence the generated object
code.
Differential Revision: https://reviews.llvm.org/D27244
llvm-svn: 288290
The LLDB tests are now ready for this patch.
DWARF specifies that "line 0" really means "no appropriate source
location" in the line table. Use this for branch targets and some
other cases that have no specified source location, to prevent
inheriting unfortunate line numbers from physically preceding
instructions (which might be from completely unrelated source).
Differential Revision: http://reviews.llvm.org/D24180
llvm-svn: 288283
Summary:
When using thin archives, and processing the same archive multiple times, we were mangling existing entries. The root cause is that we were calling computeRelativePath() more than once. Here, we only call it when adding new members to an archive.
Note that D27218 changes the way thin archives are printed, and will break the new unit test included here. Depending on which one lands first, the other will need to be slightly modified.
Reviewers: rafael, davide
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D27217
llvm-svn: 288280
Summary:
This is preparation for ThunderX processors that have Large
System Extension (LSE) atomic instructions, but not the
other instructions introduced by V8.1a.
This will mimic changes to GCC as described here:
https://gcc.gnu.org/ml/gcc-patches/2015-06/msg00388.html
LSE instructions are: LD/ST<op>, CAS*, SWP
Reviewers: t.p.northover, echristo, jmolloy, rengolin
Subscribers: aemerson, mehdi_amini
Differential Revision: https://reviews.llvm.org/D26621
llvm-svn: 288279
Summary:
Fix a case when first register in a search has maximum
RegUses.getUsedByIndices(Reg).count()
Reviewers: qcolombet
Differential Revision: http://reviews.llvm.org/D26877
From: Evgeny Stupachenko <evstupac@gmail.com>
llvm-svn: 288278
No test case necessary as the problematic condition is checked with the
newly introduced assertAllSuperRegsMarked() function.
Differential Revision: https://reviews.llvm.org/D26648
llvm-svn: 288277
This patch moves some posix specific file i/o code into a new
file, FuzzerIOPosix.cpp, and provides implementations for these
functions on Windows in FuzzerIOWindows.cpp. This is another
incremental step towards getting libfuzzer working on Windows,
although it still should not be expected to be fully working.
Patch by Marcos Pividori
Differential Revision: https://reviews.llvm.org/D27233
llvm-svn: 288275
This implements PGO-driven loop peeling.
The basic idea is that when the average dynamic trip-count of a loop is known,
based on PGO, to be low, we can expect a performance win by peeling off the
first several iterations of that loop.
Unlike unrolling based on a known trip count, or a trip count multiple, this
doesn't save us the conditional check and branch on each iteration. However,
it does allow us to simplify the straight-line code we get (constant-folding,
etc.). This is important given that we know that we will usually only hit this
code, and not the actual loop.
This is currently disabled by default.
Differential Revision: https://reviews.llvm.org/D25963
llvm-svn: 288274
In an effort to get libfuzzer working on Windows, we need to make
a distinction between what functions require platform specific
code (e.g. different code on Windows vs Linux) and what code
doesn't. IO functions, for example, tend to be platform
specific.
This patch separates out some of the functions which will need
to have platform specific implementations into different headers,
so that we can then provide different implementations for each
platform.
Aside from that, this patch contains no functional change. It
is purely a re-organization.
Patch by Marcos Pividori
Differential Revision: https://reviews.llvm.org/D27230
llvm-svn: 288264
Summary:
When computing useful bits for a BFM instruction, we need
to take into consideration the case where both operands
of the BFM are equal and provide data that we need to track.
Not doing this can cause us to miss useful bits.
Fixes PR31138 (https://llvm.org/bugs/show_bug.cgi?id=31138)
Reviewers: t.p.northover, jmolloy
Subscribers: evandro, gberry, srhines, pirama, mcrosier, aemerson, llvm-commits, rengolin
Differential Revision: https://reviews.llvm.org/D27130
llvm-svn: 288253
This is the first part of an effort to add wasm binary
support across all llvm tools.
Patch by Sam Clegg
Differential Revision: https://reviews.llvm.org/D26172
llvm-svn: 288251
Initial support for target shuffle constant folding in cases where all shuffle inputs are constant. We may be able to relax this and merge shuffles with only some constant inputs in the future.
I've added the helper function getTargetConstantBitsFromNode (based off a similar function in X86ShuffleDecodeConstantPool.cpp) that could be reused for other cases requiring constant vector extraction.
Differential Revision: https://reviews.llvm.org/D27220
llvm-svn: 288250
This is the beginning of an effort to get libfuzzer working on
Windows. This is a NFC to just add some macros for platform
detection on Windows.
Patch by Marcos Pividori
Differential Revision: https://reviews.llvm.org/D27229
llvm-svn: 288249
Summary: Further preparation for the expansion of MUL_LOHI added in D24956.
Reviewers: efriedma, RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D27064
llvm-svn: 288248
Summary:
The usage was previously guarded by HAVE_DLFCN. This breaks on Android with
LLVM_BUILD_STATIC as the platform does not provide a static version of libdl.
Using HAVE_DLOPEN fixes it as the code will only get used if we are actually able
to link an executable using dlopen.
Reviewers: rafael, beanz
Subscribers: tberghammer, danalbert, llvm-commits
Differential Revision: https://reviews.llvm.org/D26504
llvm-svn: 288246
This patch corresponds to review:
https://reviews.llvm.org/D26023
This patch adds support for converting a vector of loads into a single load if
the loads are consecutive (in either direction).
llvm-svn: 288219
This patch corresponds to review:
https://reviews.llvm.org/D25980
This is the 2nd patch in a series of 4 that improve the lowering and combining
for BUILD_VECTOR nodes on PowerPC. This particular patch combines a build vector
of fp-to-int conversions into an fp-to-int conversion of a build vector of fp
values. For example:
Converts (build_vector (fp_to_[su]i $A), (fp_to_[su]i $B), ...)
Into (fp_to_[su]i (build_vector $A, $B, ...))).
Which is a natural match for much cleaner code.
llvm-svn: 288218
Summary: Previously 0 and -1 was matched via tablegen rules. But this could cause problems where a physical register was being used where a virtual register was expected (seen in optimizeSelect and TwoAddressInstructionPass). Instead follow AArch64 and match in DAGToDAGISel.
Reviewers: eliben, majnemer
Subscribers: llvm-commits, aemerson
Differential Revision: https://reviews.llvm.org/D27171
llvm-svn: 288215
This commit caused some miscompiles that did not show up on any of the bots.
Reverting until we can investigate the cause of those failures.
llvm-svn: 288214
DWARF specifies that "line 0" really means "no appropriate source
location" in the line table. Use this for branch targets and some
other cases that have no specified source location, to prevent
inheriting unfortunate line numbers from physically preceding
instructions (which might be from completely unrelated source).
Differential Revision: http://reviews.llvm.org/D24180
llvm-svn: 288212
Michel Dänzer reported that r288051, "[StructurizeCFG] Use range-based
for loops", introduced a bug into rebuildSSA, wherein we were iterating
over an instruction's use list while modifying it, without taking care
to do this correctly.
llvm-svn: 288200
This interface allows clients to write multiple modules to a single
bitcode file. Also introduce the llvm-cat utility which can be used
to create a bitcode file containing multiple modules.
Differential Revision: https://reviews.llvm.org/D26179
llvm-svn: 288195
This is not in the list of valid inputs for the encoding.
When spilling, copies from exec can be folded directly
into the spill instruction which results in broken
stores.
This only fixes the operand constraints, more codegen
work is required to avoid emitting the invalid
spills.
This sort of breaks the dbg.value test. Because the
register class of the s_load_dwordx2 changes, there
is a copy to SReg_64, and the copy is the operand
of dbg_value. The copy is later dead, and removed
from the dbg_value.
llvm-svn: 288191
Summary:
The code in LiveRangeEdit::eliminateDeadDef() that computes isOrigDef
doesn't handle instructions in which operand 0 is not a def (e.g. KILL)
correctly. Add a check that operand 0 is a def before doing the rest of
the isOrigDef computation.
Reviewers: qcolombet, MatzeB, wmi
Subscribers: mcrosier, llvm-commits
Differential Revision: https://reviews.llvm.org/D27174
llvm-svn: 288189
Use vaddr/vdst for the same purposes.
This also fixes a beg in SIInsertWaits for the
operand check. The stored value operand is currently called
data0 in the single offset case, not data.
llvm-svn: 288188
It isn't generally safe to fold the frame index
directly into the operand since it will possibly
not be an inline immediate after it is expanded.
This surprisingly seems to produce better code, since
the FI doesn't prevent folding other immediate operands.
llvm-svn: 288185
Change the logic for when to fold immediates to
consider the destination operand rather than the
source of the materializing mov instruction.
No change yet, but this will allow for correctly handling
i16/f16 operands. Since 32-bit moves are used to materialize
constants for these, the same bitvalue will not be in the
register.
llvm-svn: 288184
Summary:
In AArch64InstrInfo::foldMemoryOperandImpl, catch more cases where the
COPY being spilled is copying from WZR/XZR, but the source register is
not in the COPY destination register's regclass.
For example, when spilling:
%vreg0 = COPY %XZR ; %vreg0:GPR64common
without this change, the code in TargetInstrInfo::foldMemoryOperand()
and canFoldCopy() that normally handles cases like this would fail to
optimize since %XZR is not in GPR64common. So the spill code generated
would be:
%vreg0 = COPY %XZR
STR %vreg
instead of the new code generated:
STR %XZR
Reviewers: qcolombet, MatzeB
Subscribers: mcrosier, aemerson, t.p.northover, llvm-commits, rengolin
Differential Revision: https://reviews.llvm.org/D26976
llvm-svn: 288176