Only PPC seems to be using it, and only checks some simple cases and
doesn't distinguish between FP. Just switch to using LLT to simplify
use from GlobalISel.
Replace with the MachineFunction. X86 is the only user, and only uses
it for the function. This removes one obstacle from using this in
GlobalISel. The other is the more tolerable EVT argument.
The X86 use of the function seems questionable to me. It checks hasFP,
before frame lowering.
llvm-svn: 373292
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
Summary: It is currently broken and for Sparc there is not much benefit
in using a builtin version compared to a library version. Both versions
needs to store the same four values in setjmp and flush the register
windows in longjmp. If the need for a builtin setjmp/longjmp arises there
is an improved implementation available at https://reviews.llvm.org/D50969.
Reviewers: jyknight, joerg, venkatra
Subscribers: fedor.sergeev, jrtc27, llvm-commits
Differential Revision: https://reviews.llvm.org/D51487
llvm-svn: 343210
Summary:
Currently bitcasting constants from f64 to v2i32 is done by storing the
value to the stack and then loading it again. This is not necessary, but
seems to happen because v2i32 is a valid type for Sparc V8. If it had not
been legal, we would have gotten help from the type legalizer.
This patch tries to do the same work as the legalizer would have done by
bitcasting the floating point constant and splitting the value up into a
vector of two i32 values.
Reviewers: venkatra, jyknight
Reviewed By: jyknight
Subscribers: glaubitz, fedor.sergeev, jrtc27, llvm-commits
Differential Revision: https://reviews.llvm.org/D49219
llvm-svn: 340723
Summary:
Looking at the callee argument list, as is done now, might not work if
the function has been typecasted into one that is expected to return
a struct. This change also simplifies the code.
The isFP128ABICall() function can be removed as it is no longer needed.
The test in fp128.ll has been updated to verify this.
Reviewers: jyknight, venkatra
Reviewed By: jyknight
Subscribers: fedor.sergeev, jrtc27, llvm-commits
Differential Revision: https://reviews.llvm.org/D48117
llvm-svn: 340008
Summary:
while investigating performance degradation of imagick benchmark
there were found inefficient pattern for UINT_TO_FP conversion.
That pattern causes RAW hazard in assembly code. Specifically,
uitofp IR operator results in poor assembler :
st %i0, [%fp - 952]
ldd [%fp - 952], %f0
it stores 32-bit integer register into memory location and then
loads 64-bit floating point data from that location.
That is exactly RAW hazard case. To optimize that case it is
possible to use SPISD::ITOF and SPISD::XTOF for conversion from
integer to floating point data type and to use ISD::BITCAST to
copy from integer register into floating point register.
The fix is to write custom UINT_TO_FP pattern using SPISD::ITOF,
SPISD::XTOF, ISD::BITCAST.
Patch by Alexey Lapshin
Reviewers: fedor.sergeev, jyknight, dcederman, lero_chris
Reviewed By: jyknight
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D36875
llvm-svn: 318704
All these headers already depend on CodeGen headers so moving them into
CodeGen fixes the layering (since CodeGen depends on Target, not the
other way around).
llvm-svn: 318490
This patch replaces the separate APInts for KnownZero/KnownOne with a single KnownBits struct. This is similar to what was done to ValueTracking's version recently.
This is largely a mechanical transformation from KnownZero to Known.Zero.
Differential Revision: https://reviews.llvm.org/D32569
llvm-svn: 301620
Follow up to D25691, this sets up the plumbing necessary to support vector demanded elements support in known bits calculations in target nodes.
Differential Revision: https://reviews.llvm.org/D31249
llvm-svn: 299201
This is a mechanical change to make TargetLowering API take MachineInstr&
(instead of MachineInstr*), since the argument is expected to be a valid
MachineInstr. In one case, changed a parameter from MachineInstr* to
MachineBasicBlock::iterator, since it was used as an insertion point.
As a side effect, this removes a bunch of MachineInstr* to
MachineBasicBlock::iterator implicit conversions, a necessary step
toward fixing PR26753.
llvm-svn: 274287
This used to be free, copying and moving DebugLocs became expensive
after the metadata rewrite. Passing by reference eliminates a ton of
track/untrack operations. No functionality change intended.
llvm-svn: 272512
This change adds support for software floating point operations for Sparc targets.
This is the first in a set of patches to enable software floating point on Sparc. The next patch will enable the option to be used with Clang.
Differential Revision: http://reviews.llvm.org/D19265
llvm-svn: 269892
This code implements builtin_setjmp and builtin_longjmp exception handling intrinsics for 32-bit Sparc back-ends.
The code started as a mash-up of the PowerPC and X86 versions, although there are sufficient differences to both that had to be made for Sparc handling.
Note: I have manual tests running. I'll work on a unit test and add that to the rest of this diff in the next day.
Also, this implementation is only for 32-bit Sparc. I haven't focussed on a 64-bit version, although I have left the code in a prepared state for implementing this, including detecting pointer size and comments indicating where I suspect there may be differences.
Differential Revision: http://reviews.llvm.org/D19798
llvm-svn: 268483
This patch changes the TargetMachine arguments to be const. This is
required for {D19265}, and was requested to be done in a separate patch.
Patch by Jacob Hansen!
Differential Revision: http://reviews.llvm.org/D19797
llvm-svn: 268389
They were previously expanded to CAS loops in a custom isel expansion,
but AtomicExpandPass knows how to do that generically.
Testing is covered by the existing sparc atomics.ll testcases.
llvm-svn: 264771
- Rename getATOMIC to getSYNC, as llvm will soon be able to emit both
'__sync' libcalls and '__atomic' libcalls, and this function is for
the '__sync' ones.
- getInsertFencesForAtomic() has been replaced with
shouldInsertFencesForAtomic(Instruction), so that the decision can be
made per-instruction. This functionality will be used soon.
- emitLeadingFence/emitTrailingFence are no longer called if
shouldInsertFencesForAtomic returns false, and thus don't need to
check the condition themselves.
llvm-svn: 263665
Summary:
The CLR's personality routine passes these in rdx/edx, not rax/eax.
Make getExceptionPointerRegister a virtual method parameterized by
personality function to allow making this distinction.
Similarly make getExceptionSelectorRegister a virtual method parameterized
by personality function, for symmetry.
Reviewers: pgavlin, majnemer, rnk
Subscribers: jyknight, dsanders, llvm-commits
Differential Revision: http://reviews.llvm.org/D14344
llvm-svn: 252383
The LDD/STD instructions can load/store a 64bit quantity from/to
memory to/from a consecutive even/odd pair of (32-bit) registers. They
are part of SparcV8, and also present in SparcV9. (Although deprecated
there, as you can store 64bits in one register).
As recommended on llvmdev in the thread "How to enable use of 64bit
load/store for 32bit architecture" from Apr 2015, I've modeled the
64-bit load/store operations as working on a v2i32 type, rather than
making i64 a legal type, but with few legal operations. The latter
does not (currently) work, as there is much code in llvm which assumes
that if i64 is legal, operations like "add" will actually work on it.
The same assumption does not hold for v2i32 -- for vector types, it is
workable to support only load/store, and expand everything else.
This patch:
- Adds a new register class, IntPair, for even/odd pairs of registers.
- Modifies the list of reserved registers, the stack spilling code,
and register copying code to support the IntPair register class.
- Adds support in AsmParser. (note that in asm text, you write the
name of the first register of the pair only. So the parser has to
morph the single register into the equivalent paired register).
- Adds the new instructions themselves (LDD/STD/LDDA/STDA).
- Hooks up the instructions and registers as a vector type v2i32. Adds
custom legalizer to transform i64 load/stores into v2i32 load/stores
and bitcasts, so that the new instructions can actually be
generated, and marks all operations other than load/store on v2i32
as needing to be expanded.
- Copies the unfortunate SelectInlineAsm hack from ARMISelDAGToDAG.
This hack undoes the transformation of i64 operands into two
arbitrarily-allocated separate i32 registers in
SelectionDAGBuilder. and instead passes them in a single
IntPair. (Arbitrarily allocated registers are not useful, asm code
expects to be receiving a pair, which can be passed to ldd/std.)
Also adds a bunch of test cases covering all the bugs I've added along
the way.
Differential Revision: http://reviews.llvm.org/D8713
llvm-svn: 244484
Summary:
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
Reviewers: echristo
Subscribers: jholewinski, llvm-commits, rafael, yaron.keren
Differential Revision: http://reviews.llvm.org/D11037
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 241776
Summary:
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
Reviewers: echristo
Subscribers: jholewinski, ted, yaron.keren, rafael, llvm-commits
Differential Revision: http://reviews.llvm.org/D11028
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 241775
There is some functional change here because it changes target code from
atoi(3) to StringRef::getAsInteger which has error checking. For valid
constraints there should be no difference.
llvm-svn: 241411
The patch is generated using this command:
tools/clang/tools/extra/clang-tidy/tool/run-clang-tidy.py -fix \
-checks=-*,llvm-namespace-comment -header-filter='llvm/.*|clang/.*' \
llvm/lib/
Thanks to Eugene Kosov for the original patch!
llvm-svn: 240137
Summary:
This is instead of doing this in target independent code and is the last
non-functional change before targets begin to distinguish between
different memory constraints when selecting code for the ISD::INLINEASM
node.
Next, each target will individually move away from the idea that all
memory constraints behave like 'm'.
Subscribers: jholewinski, llvm-commits
Differential Revision: http://reviews.llvm.org/D8173
llvm-svn: 232373
a lookup, pass that in rather than use a naked call to getSubtargetImpl.
This involved passing down and around either a TargetMachine or
TargetRegisterInfo. Update all callers/definitions around the targets
and SelectionDAG.
llvm-svn: 230699
Add header guards to files that were missing guards. Remove #endif comments
as they don't seem common in LLVM (we can easily add them back if we decide
they're useful)
Changes made by clang-tidy with minor tweaks.
llvm-svn: 215558