In order to properly implement these atomic we need one register more than other
binary atomics. It is used for storing result from comparing values in addition
to the one that is used for actual result of operation.
https://reviews.llvm.org/D71028
`saa` and `saad` are 32-bit and 64-bit store atomic add instructions.
memory[base] = memory[base] + rt
These instructions are available for "Octeon+" CPU. The patch adds support
for both instructions to MIPS assembler and diassembler and introduces new
CPU type - "octeon+".
Next patches will implement `.set arch=octeon+` directive and `AFL_EXT_OCTEONP`
ISA extension flag support.
Differential Revision: https://reviews.llvm.org/D69849
Add `IsGP64bit` and `IsPTR64bit` to the list of `UnsupportedFeatures`
of the P5600 scheduling definitions. Also mark some MIPS 64-bit
instructions by PTR_64 and GPR_64 predicates. This reduces number
of "No schedule information for" and "lacks information for" errors
in case of marking this scheduler model as complete.
This patch is one of a series of patches. The goal is to make P5600
scheduler model complete and turn on the `CompleteModel` flag.
Differential Revision: https://reviews.llvm.org/D63237
llvm-svn: 363702
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
This mostly brings the P5600 scheduler model to a mostly complete
status. There are a number of instructions which trigger the
`error:'MipsP5600Model' lacks information for` error. These are certain
codegen only instructions relating to MIPS64 which can be addressed by
using the correct predicates for them. That will be done in a full-up
patch.
Patch by Simon Dardis.
Differential revision: https://reviews.llvm.org/D45245
llvm-svn: 336802
For schedule models that don't use itineraries, checkCompleteness still checks that an instruction has a matching itinerary instead of skipping and going straight to matching the InstRWs. That doesn't seem to match what happens in TargetSchedule.cpp
This patch causes problems for a number of models that had been incorrectly flagged as complete.
Differential Revision: https://reviews.llvm.org/D43235
llvm-svn: 329280
This is similar to the check later when we remap some of the instructions from one class to a new one. But if we reuse the class we don't get to do that check.
So many CPUs have violations of this check that I had to add a flag to the SchedMachineModel to allow it to be disabled. Hopefully we can get those cleaned up quickly and remove this flag.
A lot of the violations are due to overlapping regular expressions, but that's not the only kind of issue it found.
llvm-svn: 327808
The MIPS backend has inconsistent usage of instruction predicates
for assembly and code generation. The issue arises from supporting three
encodings, two (MIPS and microMIPS) of which have a near 1:1 instruction
mapping across ISA revisions and a third encoding with a more restricted
set of instructions (MIPS16e).
To enforce consistent usage, each of the ISA_* adjectives has (or will
have) the relevant encoding attached to it along the relevant ISA revision
where the instruction is defined.
Each instruction, pattern or alias will then have the correct ISA adjective
attached to it, and the base instruction description classes will have any
predicates relating to ISA encoding or revision removed.
Pseudo instructions will also be guarded for the encoding or ABI that they are
supported in.
Finally, the hasStandardEncoding() / inMicroMipsMode() / inMips16Mode() methods
of MipsSubtarget will be changed such that only one can be true at any one time.
The result of this is that code generation and assembly will produce the
correct encoding up front, while code generated from pseudo instructions
and other inserted sequences of instructions will be able to rely on the mapping
tables to produce the correct encoding. This should fix numerous bugs where
the result 'happens' to be correct but has edge cases where microMIPS and MIPS
have subtle differences (e.g. microMIPSR6 using 'j', 'jal' instructions.)
This patch starts the process by changing most of the ISA adjectives to make
use of the EncodingPredicate member of PredicateControl. Follow on patches
will annotate instructions with their correct ISA adjective and eliminate
the usage of "let Predicates = [..]", "let AdditionalPredicates = [..]" and
"isCodeGenOnly = 1" in the cases where it was used to control instruction
availability.
Contributions from Nitesh Jain.
Reviewers: atanasyan
Differential Revision: https://reviews.llvm.org/D41434
llvm-svn: 326322
All files and parts of files related to microMIPS4R6 are removed.
When target is microMIPS4R6, errors are printed.
This is LLVM part of patch.
Differential Revision: https://reviews.llvm.org/D35625
llvm-svn: 320350
Add rsqrt.[ds], recip.[ds] for MIPS. Correct the microMIPS definitions for
architecture support and register usage.
Reviewers: vkalintiris, zoran.jovanoic
Differential Review: https://reviews.llvm.org/D24499
llvm-svn: 283334
Add rsqrt.[ds], recip.[ds] for MIPS. Correct the microMIPS definitions for
architecture support and register usage.
Reviewers: vkalintiris, zoran.jovanoic
Differential Review: https://reviews.llvm.org/D24499
llvm-svn: 282485
These changes update the schedule model for the P5600 and includes the
rest of the MSA and MIPS32R5 instruction sets.
Reviewers: dsanders, vkalintris
Differential Revision: https://reviews.llvm.org/D21835
llvm-svn: 277441
TableGen checks at compiletime that for scheduling models with
"CompleteModel = 1" one of the following holds:
- Is marked with the hasNoSchedulingInfo flag
- The instruction is a subclass of Sched
- There are InstRW definitions in the scheduling model
Typical steps necessary to complete a model:
- Ensure all pseudo instructions that are expanded before machine
scheduling (usually everything handled with EmitYYY() functions in
XXXTargetLowering).
- If a CPU does not support some instructions mark the corresponding
resource unsupported: "WriteRes<WriteXXX, []> { let Unsupported = 1; }".
- Add missing scheduling information.
Differential Revision: http://reviews.llvm.org/D17747
llvm-svn: 262384
Summary:
The P5600 is an out-of-order, superscalar implementation of the MIPS32R5
architecture.
The scheduler has a few missing details (see the 'Tricky Instructions'
section and some quirks of the P5600 are deliberately omitted due to
implementation difficulty and low chance of significant benefit (e.g. the
predicate on P5600WriteEitherALU). However, testing on SingleSource is
showing significant performance benefits on some apps (seven in the 10-30%
range) and only one significant regression (12%) when
-pre-RA-sched=linearize is given. Without -pre-RA-sched=linearize the
results are more variable. Some do even better (up to 55% improvement) but
increased numbers of copies are slowing others down (up to 12%).
Overall, the scheduler as it currently stands is a 2.4% win with
-pre-RA-sched=linearize and a 2.7% win without -pre-RA-sched=linearize.
I'm sure we can improve on this further.
For completeness, the FPGA this was tested on shows some failures with and
without the P5600 scheduler. These appear to be scheduling related since
the two test runs have fairly different sets of failing tests even after
accounting for other factors (e.g. spurious connection failures) however
it's not P5600 specific since we also get some for the generic scheduler.
Reviewers: vkalintiris
Subscribers: mpf, llvm-commits, atrick, vkalintiris
Differential Revision: http://reviews.llvm.org/D12193
llvm-svn: 248725