We are seeing r276077 drastically increasing compiler time for our larger
benchmarks in PGO profile generation build (both clang based and IR based
mode) -- it can be 20x slower than without the patch (like from 30 secs to
780 secs)
The increased time are all in pass LCSSA. The problematic code is about
PostProcessPHIs after use-rewrite. Note that the InsertedPhis from ssa_updater
is accumulating (never been cleared). Since the inserted PHIs are added to the
candidate for each rewrite, The earlier ones will be repeatedly added. Later
when adding the new PHIs to the work-list, we don't check the duplication
either. This can result in extremely long work-list that containing tons of
duplicated PHIs.
This patch fixes the issue by hoisting the code out of the loop.
Differential Revision: http://reviews.llvm.org/D23344
llvm-svn: 278250
Besides a general consistently benefit, the extra layer of indirection
allows the mechanical part of https://reviews.llvm.org/D23256 that
requires touching every transformation and analysis to be factored out
cleanly.
Thanks to David for the suggestion.
llvm-svn: 278077
Summary:
LCSSAWrapperPass currently doesn't override verifyAnalysis method, so pass
manager doesn't verify LCSSA. This patch adds the method so that we start
verifying LCSSA between loop passes.
Reviewers: chandlerc, sanjoy, hfinkel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D22888
llvm-svn: 276941
Revert "[LoopSimplify] Update LCSSA after separating nested loops."
This reverts commit r275891.
Revert "[LCSSA] Post-process PHI-nodes created by SSAUpdate when constructing LCSSA form."
This reverts commit r275883.
llvm-svn: 276064
Summary:
When a pass tries to keep LCSSA form it's often convenient to be able to update
LCSSA for a set of instructions rather than for the entire loop. This patch makes the
processInstruction from LCSSA externally available under a name
formLCSSAForInstruction.
Reviewers: chandlerc, sanjoy, hfinkel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D22378
llvm-svn: 275613
more places to prevent gratuitous re-"runs" of these passes.
The passes themselves don't do any work when run, but we keep spending
time scheduling and running these needlessly when we really don't need
to do so.
This is the first patch towards fixing the really horrible loop pass
pipeline fragmentation pointed out by Sanjoy in PR24804.
llvm-svn: 261302
While we have successfully implemented a funclet-oriented EH scheme on
top of LLVM IR, our scheme has some notable deficiencies:
- catchendpad and cleanupendpad are necessary in the current design
but they are difficult to explain to others, even to seasoned LLVM
experts.
- catchendpad and cleanupendpad are optimization barriers. They cannot
be split and force all potentially throwing call-sites to be invokes.
This has a noticable effect on the quality of our code generation.
- catchpad, while similar in some aspects to invoke, is fairly awkward.
It is unsplittable, starts a funclet, and has control flow to other
funclets.
- The nesting relationship between funclets is currently a property of
control flow edges. Because of this, we are forced to carefully
analyze the flow graph to see if there might potentially exist illegal
nesting among funclets. While we have logic to clone funclets when
they are illegally nested, it would be nicer if we had a
representation which forbade them upfront.
Let's clean this up a bit by doing the following:
- Instead, make catchpad more like cleanuppad and landingpad: no control
flow, just a bunch of simple operands; catchpad would be splittable.
- Introduce catchswitch, a control flow instruction designed to model
the constraints of funclet oriented EH.
- Make funclet scoping explicit by having funclet instructions consume
the token produced by the funclet which contains them.
- Remove catchendpad and cleanupendpad. Their presence can be inferred
implicitly using coloring information.
N.B. The state numbering code for the CLR has been updated but the
veracity of it's output cannot be spoken for. An expert should take a
look to make sure the results are reasonable.
Reviewers: rnk, JosephTremoulet, andrew.w.kaylor
Differential Revision: http://reviews.llvm.org/D15139
llvm-svn: 255422
Continuing the work from last week to remove implicit ilist iterator
conversions. First related commit was probably r249767, with some more
motivation in r249925. This edition gets LLVMTransformUtils compiling
without the implicit conversions.
No functional change intended.
llvm-svn: 250142
with the new pass manager, and no longer relying on analysis groups.
This builds essentially a ground-up new AA infrastructure stack for
LLVM. The core ideas are the same that are used throughout the new pass
manager: type erased polymorphism and direct composition. The design is
as follows:
- FunctionAAResults is a type-erasing alias analysis results aggregation
interface to walk a single query across a range of results from
different alias analyses. Currently this is function-specific as we
always assume that aliasing queries are *within* a function.
- AAResultBase is a CRTP utility providing stub implementations of
various parts of the alias analysis result concept, notably in several
cases in terms of other more general parts of the interface. This can
be used to implement only a narrow part of the interface rather than
the entire interface. This isn't really ideal, this logic should be
hoisted into FunctionAAResults as currently it will cause
a significant amount of redundant work, but it faithfully models the
behavior of the prior infrastructure.
- All the alias analysis passes are ported to be wrapper passes for the
legacy PM and new-style analysis passes for the new PM with a shared
result object. In some cases (most notably CFL), this is an extremely
naive approach that we should revisit when we can specialize for the
new pass manager.
- BasicAA has been restructured to reflect that it is much more
fundamentally a function analysis because it uses dominator trees and
loop info that need to be constructed for each function.
All of the references to getting alias analysis results have been
updated to use the new aggregation interface. All the preservation and
other pass management code has been updated accordingly.
The way the FunctionAAResultsWrapperPass works is to detect the
available alias analyses when run, and add them to the results object.
This means that we should be able to continue to respect when various
passes are added to the pipeline, for example adding CFL or adding TBAA
passes should just cause their results to be available and to get folded
into this. The exception to this rule is BasicAA which really needs to
be a function pass due to using dominator trees and loop info. As
a consequence, the FunctionAAResultsWrapperPass directly depends on
BasicAA and always includes it in the aggregation.
This has significant implications for preserving analyses. Generally,
most passes shouldn't bother preserving FunctionAAResultsWrapperPass
because rebuilding the results just updates the set of known AA passes.
The exception to this rule are LoopPass instances which need to preserve
all the function analyses that the loop pass manager will end up
needing. This means preserving both BasicAAWrapperPass and the
aggregating FunctionAAResultsWrapperPass.
Now, when preserving an alias analysis, you do so by directly preserving
that analysis. This is only necessary for non-immutable-pass-provided
alias analyses though, and there are only three of interest: BasicAA,
GlobalsAA (formerly GlobalsModRef), and SCEVAA. Usually BasicAA is
preserved when needed because it (like DominatorTree and LoopInfo) is
marked as a CFG-only pass. I've expanded GlobalsAA into the preserved
set everywhere we previously were preserving all of AliasAnalysis, and
I've added SCEVAA in the intersection of that with where we preserve
SCEV itself.
One significant challenge to all of this is that the CGSCC passes were
actually using the alias analysis implementations by taking advantage of
a pretty amazing set of loop holes in the old pass manager's analysis
management code which allowed analysis groups to slide through in many
cases. Moving away from analysis groups makes this problem much more
obvious. To fix it, I've leveraged the flexibility the design of the new
PM components provides to just directly construct the relevant alias
analyses for the relevant functions in the IPO passes that need them.
This is a bit hacky, but should go away with the new pass manager, and
is already in many ways cleaner than the prior state.
Another significant challenge is that various facilities of the old
alias analysis infrastructure just don't fit any more. The most
significant of these is the alias analysis 'counter' pass. That pass
relied on the ability to snoop on AA queries at different points in the
analysis group chain. Instead, I'm planning to build printing
functionality directly into the aggregation layer. I've not included
that in this patch merely to keep it smaller.
Note that all of this needs a nearly complete rewrite of the AA
documentation. I'm planning to do that, but I'd like to make sure the
new design settles, and to flesh out a bit more of what it looks like in
the new pass manager first.
Differential Revision: http://reviews.llvm.org/D12080
llvm-svn: 247167
This change makes ScalarEvolution a stand-alone object and just produces
one from a pass as needed. Making this work well requires making the
object movable, using references instead of overwritten pointers in
a number of places, and other refactorings.
I've also wired it up to the new pass manager and added a RUN line to
a test to exercise it under the new pass manager. This includes basic
printing support much like with other analyses.
But there is a big and somewhat scary change here. Prior to this patch
ScalarEvolution was never *actually* invalidated!!! Re-running the pass
just re-wired up the various other analyses and didn't remove any of the
existing entries in the SCEV caches or clear out anything at all. This
might seem OK as everything in SCEV that can uses ValueHandles to track
updates to the values that serve as SCEV keys. However, this still means
that as we ran SCEV over each function in the module, we kept
accumulating more and more SCEVs into the cache. At the end, we would
have a SCEV cache with every value that we ever needed a SCEV for in the
entire module!!! Yowzers. The releaseMemory routine would dump all of
this, but that isn't realy called during normal runs of the pipeline as
far as I can see.
To make matters worse, there *is* actually a key that we don't update
with value handles -- there is a map keyed off of Loop*s. Because
LoopInfo *does* release its memory from run to run, it is entirely
possible to run SCEV over one function, then over another function, and
then lookup a Loop* from the second function but find an entry inserted
for the first function! Ouch.
To make matters still worse, there are plenty of updates that *don't*
trip a value handle. It seems incredibly unlikely that today GVN or
another pass that invalidates SCEV can update values in *just* such
a way that a subsequent run of SCEV will incorrectly find lookups in
a cache, but it is theoretically possible and would be a nightmare to
debug.
With this refactoring, I've fixed all this by actually destroying and
recreating the ScalarEvolution object from run to run. Technically, this
could increase the amount of malloc traffic we see, but then again it is
also technically correct. ;] I don't actually think we're suffering from
tons of malloc traffic from SCEV because if we were, the fact that we
never clear the memory would seem more likely to have come up as an
actual problem before now. So, I've made the simple fix here. If in fact
there are serious issues with too much allocation and deallocation,
I can work on a clever fix that preserves the allocations (while
clearing the data) between each run, but I'd prefer to do that kind of
optimization with a test case / benchmark that shows why we need such
cleverness (and that can test that we actually make it faster). It's
possible that this will make some things faster by making the SCEV
caches have higher locality (due to being significantly smaller) so
until there is a clear benchmark, I think the simple change is best.
Differential Revision: http://reviews.llvm.org/D12063
llvm-svn: 245193
Some personality routines require funclet exit points to be clearly
marked, this is done by producing a token at the funclet pad and
consuming it at the corresponding ret instruction. CleanupReturnInst
already had a spot for this operand but CatchReturnInst did not.
Other personality routines don't need to use this which is why it has
been made optional.
llvm-svn: 245149
The patch is generated using this command:
tools/clang/tools/extra/clang-tidy/tool/run-clang-tidy.py -fix \
-checks=-*,llvm-namespace-comment -header-filter='llvm/.*|clang/.*' \
llvm/lib/
Thanks to Eugene Kosov for the original patch!
llvm-svn: 240137
Summary:
This lets us use range based for loops.
Reviewers: chandlerc
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D9169
llvm-svn: 235416
a LoopInfoWrapperPass to wire the object up to the legacy pass manager.
This switches all the clients of LoopInfo over and paves the way to port
LoopInfo to the new pass manager. No functionality change is intended
with this iteration.
llvm-svn: 226373
Take two disjoint Loops L1 and L2.
LoopSimplify fails to simplify some loops (e.g. when indirect branches
are involved). In such situations, it can happen that an exit for L1 is
the header of L2. Thus, when we create PHIs in one of such exits we are
also inserting PHIs in L2 header.
This could break LCSSA form for L2 because these inserted PHIs can also
have uses in L2 exits, which are never handled in the current
implementation. Provide a fix for this corner case and test that we
don't assert/crash on that.
Differential Revision: http://reviews.llvm.org/D6624
rdar://problem/19166231
llvm-svn: 224740
definition below all of the header #include lines, lib/Transforms/...
edition.
This one is tricky for two reasons. We again have a couple of passes
that define something else before the includes as well. I've sunk their
name macros with the DEBUG_TYPE.
Also, InstCombine contains headers that need DEBUG_TYPE, so now those
headers #define and #undef DEBUG_TYPE around their code, leaving them
well formed modular headers. Fixing these headers was a large motivation
for all of these changes, as "leaky" macros of this form are hard on the
modules implementation.
llvm-svn: 206844
This requires a number of steps.
1) Move value_use_iterator into the Value class as an implementation
detail
2) Change it to actually be a *Use* iterator rather than a *User*
iterator.
3) Add an adaptor which is a User iterator that always looks through the
Use to the User.
4) Wrap these in Value::use_iterator and Value::user_iterator typedefs.
5) Add the range adaptors as Value::uses() and Value::users().
6) Update *all* of the callers to correctly distinguish between whether
they wanted a use_iterator (and to explicitly dig out the User when
needed), or a user_iterator which makes the Use itself totally
opaque.
Because #6 requires churning essentially everything that walked the
Use-Def chains, I went ahead and added all of the range adaptors and
switched them to range-based loops where appropriate. Also because the
renaming requires at least churning every line of code, it didn't make
any sense to split these up into multiple commits -- all of which would
touch all of the same lies of code.
The result is still not quite optimal. The Value::use_iterator is a nice
regular iterator, but Value::user_iterator is an iterator over User*s
rather than over the User objects themselves. As a consequence, it fits
a bit awkwardly into the range-based world and it has the weird
extra-dereferencing 'operator->' that so many of our iterators have.
I think this could be fixed by providing something which transforms
a range of T&s into a range of T*s, but that *can* be separated into
another patch, and it isn't yet 100% clear whether this is the right
move.
However, this change gets us most of the benefit and cleans up
a substantial amount of code around Use and User. =]
llvm-svn: 203364
The crux of the issue is that LCSSA doesn't preserve stateful alias
analyses. Before r200067, LICM didn't cause LCSSA to run in the LTO pass
manager, where LICM runs essentially without any of the other loop
passes. As a consequence the globalmodref-aa pass run before that loop
pass manager was able to survive the loop pass manager and be used by
DSE to eliminate stores in the function called from the loop body in
Adobe-C++/loop_unroll (and similar patterns in other benchmarks).
When LICM was taught to preserve LCSSA it had to require it as well.
This caused it to be run in the loop pass manager and because it did not
preserve AA, the stateful AA was lost. Most of LLVM's AA isn't stateful
and so this didn't manifest in most cases. Also, in most cases LCSSA was
already running, and so there was no interesting change.
The real kicker is that LCSSA by its definition (injecting PHI nodes
only) trivially preserves AA! All we need to do is mark it, and then
everything goes back to working as intended. It probably was blocking
some other weird cases of stateful AA but the only one I have is
a 1000-line IR test case from loop_unroll, so I don't really have a good
test case here.
Hopefully this fixes the regressions on performance that have been seen
since that revision.
llvm-svn: 201104
LCSSA from it caused a crasher with the LoopUnroll pass.
This crasher is really nasty. We destroy LCSSA form in a suprising way.
When unrolling a loop into an outer loop, we not only need to restore
LCSSA form for the outer loop, but for all children of the outer loop.
This is somewhat obvious in retrospect, but hey!
While this seems pretty heavy-handed, it's not that bad. Fundamentally,
we only do this when we unroll a loop, which is already a heavyweight
operation. We're unrolling all of these hypothetical inner loops as
well, so their size and complexity is already on the critical path. This
is just adding another pass over them to re-canonicalize.
I have a test case from PR18616 that is great for reproducing this, but
pretty useless to check in as it relies on many 10s of nested empty
loops that get unrolled and deleted in just the right order. =/ What's
worse is that investigating this has exposed another source of failure
that is likely to be even harder to test. I'll try to come up with test
cases for these fixes, but I want to get the fixes into the tree first
as they're causing crashes in the wild.
llvm-svn: 200273
the loops in a function, and teach LICM to work in the presance of
LCSSA.
Previously, LCSSA was a loop pass. That made passes requiring it also be
loop passes and unable to depend on function analysis passes easily. It
also caused outer loops to have a different "canonical" form from inner
loops during analysis. Instead, we go into LCSSA form and preserve it
through the loop pass manager run.
Note that this has the same problem as LoopSimplify that prevents
enabling its verification -- loop passes which run at the end of the loop
pass manager and don't preserve these are valid, but the subsequent loop
pass runs of outer loops that do preserve this pass trigger too much
verification and fail because the inner loop no longer verifies.
The other problem this exposed is that LICM was completely unable to
handle LCSSA form. It didn't preserve it and it actually would give up
on moving instructions in many cases when they were used by an LCSSA phi
node. I've taught LICM to support detecting LCSSA-form PHI nodes and to
hoist and sink around them. This may actually let LICM fire
significantly more because we put everything into LCSSA form to rotate
the loop before running LICM. =/ Now LICM should handle that fine and
preserve it correctly. The down side is that LICM has to require LCSSA
in order to preserve it. This is just a fact of life for LCSSA. It's
entirely possible we should completely remove LCSSA from the optimizer.
The test updates are essentially accomodating LCSSA phi nodes in the
output of LICM, and the fact that we now completely sink every
instruction in ashr-crash below the loop bodies prior to unrolling.
With this change, LCSSA is computed only three times in the pass
pipeline. One of them could be removed (and potentially a SCEV run and
a separate LoopPassManager entirely!) if we had a LoopPass variant of
InstCombine that ran InstCombine on the loop body but refused to combine
away LCSSA PHI nodes. Currently, this also prevents loop unrolling from
being in the same loop pass manager is rotate, LICM, and unswitch.
There is one thing that I *really* don't like -- preserving LCSSA in
LICM is quite expensive. We end up having to re-run LCSSA twice for some
loops after LICM runs because LICM can undo LCSSA both in the current
loop and the parent loop. I don't really see good solutions to this
other than to completely move away from LCSSA and using tools like
SSAUpdater instead.
llvm-svn: 200067
can be used by both the new pass manager and the old.
This removes it from any of the virtual mess of the pass interfaces and
lets it derive cleanly from the DominatorTreeBase<> template. In turn,
tons of boilerplate interface can be nuked and it turns into a very
straightforward extension of the base DominatorTree interface.
The old analysis pass is now a simple wrapper. The names and style of
this split should match the split between CallGraph and
CallGraphWrapperPass. All of the users of DominatorTree have been
updated to match using many of the same tricks as with CallGraph. The
goal is that the common type remains the resulting DominatorTree rather
than the pass. This will make subsequent work toward the new pass
manager significantly easier.
Also in numerous places things became cleaner because I switched from
re-running the pass (!!! mid way through some other passes run!!!) to
directly recomputing the domtree.
llvm-svn: 199104
directory. These passes are already defined in the IR library, and it
doesn't make any sense to have the headers in Analysis.
Long term, I think there is going to be a much better way to divide
these matters. The dominators code should be fully separated into the
abstract graph algorithm and have that put in Support where it becomes
obvious that evn Clang's CFGBlock's can use it. Then the verifier can
manually construct dominance information from the Support-driven
interface while the Analysis library can provide a pass which both
caches, reconstructs, and supports a nice update API.
But those are very long term, and so I don't want to leave the really
confusing structure until that day arrives.
llvm-svn: 199082
into their new header subdirectory: include/llvm/IR. This matches the
directory structure of lib, and begins to correct a long standing point
of file layout clutter in LLVM.
There are still more header files to move here, but I wanted to handle
them in separate commits to make tracking what files make sense at each
layer easier.
The only really questionable files here are the target intrinsic
tablegen files. But that's a battle I'd rather not fight today.
I've updated both CMake and Makefile build systems (I think, and my
tests think, but I may have missed something).
I've also re-sorted the includes throughout the project. I'll be
committing updates to Clang, DragonEgg, and Polly momentarily.
llvm-svn: 171366
Sooooo many of these had incorrect or strange main module includes.
I have manually inspected all of these, and fixed the main module
include to be the nearest plausible thing I could find. If you own or
care about any of these source files, I encourage you to take some time
and check that these edits were sensible. I can't have broken anything
(I strictly added headers, and reordered them, never removed), but they
may not be the headers you'd really like to identify as containing the
API being implemented.
Many forward declarations and missing includes were added to a header
files to allow them to parse cleanly when included first. The main
module rule does in fact have its merits. =]
llvm-svn: 169131
- Use value handle tricks to communicate use replacements instead of forgetLoop, this is a lot faster.
- Move the "big hammer" out of the main loop so it's not called for every instruction.
This should recover most (if not all) compile time regressions introduced by this code.
llvm-svn: 167136
The LoopSimplify bug is pretty harmless because the loop goes from unanalyzable
to analyzable but the LCSSA bug is very nasty. It only comes into play with a
specific order of the LoopPassManager worklist and can cause actual
miscompilations, when a SCEV refers to a value that has been replaced with PHI
node. SCEVExpander may then insert code into the wrong place, either violating
domination or randomly miscompiling stuff.
Comes with an extensive test case reduced from the test-suite with
bugpoint+SCEVValidator.
llvm-svn: 166787