Upstream the eCore_arm_arm64e enum value in ArchSpec. All the other
arm64e triple changes already landed in LLVM.
Differential revision: https://reviews.llvm.org/D95110
Adds the RISC-V ArchSpec bits contributed by @simoncook as part of D62732,
plus logic to distinguish between riscv32 and riscv64 based on ELF class.
The patch follows the implementation approach previously used for MIPS.
It defines RISC-V architecture subtypes and inspects the ELF header,
namely the ELF class, to detect the right subtype.
Differential Revision: https://reviews.llvm.org/D86292
Emit os_signposts when supported from LLDB's timer class. A vast amount
of performance sensitive places in LLDB are already instrumented with
the Timer class.
By emitting signposts we can examine this information in Instruments. I
recommend looking at Daniel's differential for why this is so powerful:
https://reviews.llvm.org/D52954.
Differential revision: https://reviews.llvm.org/D93657
Prevent lldb from crashing when multiple threads are concurrently
accessing the SB API with reproducer capture enabled.
The API instrumentation records both the input arguments and the return
value, but it cannot block for the duration of the API call. Therefore
we introduce a sequence number that allows to to correlate the function
with its result and add locking to ensure those two parts are emitted
atomically.
Using the sequence number, we can detect situations where the return
value does not succeed the function call, in which case we print an
error saying that concurrency is not (currently) supported. In the
future we might attempt to be smarter and read ahead until we've found
the return value matching the current call.
Differential revision: https://reviews.llvm.org/D92820
The reproducers currently use a static variable to track the API
boundary. This is obviously incorrect when the SB API is used
concurrently. While I do not plan to support that use-case (right now),
I do want to avoid us crashing. As a first step, correctly track API
boundaries across multiple threads.
Before this patch SB API calls made by the embedded script interpreter
would be considered "behind the API boundary" and correctly ignored.
After this patch, we need to tell the reproducers to ignore the
scripting thread as a "private thread".
Differential revision: https://reviews.llvm.org/D92811
Use the cpu subtype enum values from llvm::MachO in the ArchSpec MachO
table. As I'm already cluttering the history, restore the table's
formatting to its original glory.
Differential revision: https://reviews.llvm.org/D92601
Make sure we recognize cpu sub-type 2 as arm64. In reality it's arm64e,
but we don't have the triple for that. Without this patch, we fall back
to unknown-apple-macosx- for the default architecture, which breaks
things like running expressions without a target.
Differential revision: https://reviews.llvm.org/D92603
Depends on D89283.
The goal of this packet (jTraceGetSupportedType) is to be able to query the gdb-server for the tracing technology that can work for the current debuggeer, which can make the user experience simpler but allowing the user to simply type
thread trace start
to start tracing the current thread without even telling the debugger to use "intel-pt", for example. Similarly, `thread trace start [args...]` would accept args beloging to the working trace type.
Also, if the user typed
help thread trace start
We could directly show the help information of the trace type that is supported for the target, or mention instead that no tracing is supported, if that's the case.
I added some simple tests, besides, when I ran this on my machine with intel-pt support, I got
$ process plugin packet send "jTraceSupportedType"
packet: jTraceSupportedType
response: {"description":"Intel Processor Trace","pluginName":"intel-pt"}
On a machine without intel-pt support, I got
$ process plugin packet send "jTraceSupportedType"
packet: jTraceSupportedType
response: E00;
Reviewed By: clayborg, labath
Differential Revision: https://reviews.llvm.org/D90490
For performance reasons the reproducers don't copy the files captured by
the file collector eagerly, but wait until the reproducer needs to be
generated.
This is a problematic when LLDB crashes and we have to do all this
signal-unsafe work in the signal handler. This patch uses a similar
trick to clang, which has the driver invoke a new cc1 instance to do all
this work out-of-process.
This patch moves the writing of the mapping file as well as copying over
the reproducers into a separate process spawned when lldb crashes.
Differential revision: https://reviews.llvm.org/D89600
The existing help text was very terse and was missing several important
options. In the new version, I add a short description of each option
and a slightly longer description of the tool as a whole.
The new option list does not include undocumented no-op options:
--debug and --verbose. It also does not include undocumented short
aliases for long options, with two exceptions: -h, because it's
well-known; and -S (--setsid), as it's used in one test. Using these
options will now produce an error. I believe that is acceptable as users
aren't generally invoking lldb-server directly, and the only way to
learn about the short aliases was by looking at the source.
Differential Revision: https://reviews.llvm.org/D89477
This is essentially a replacement for the PacketUnimplementedError
previously present in the gdb-remote server code.
The reason I am introducing a generic error is because I wanted the
native process classes to be able to signal that they do not support
some functionality. They could not use PacketUnimplementedError as they
are independent of a specific transport protocol. Putting the error
class in the the native process code was also not ideal because the
gdb-remote code is also used for lldb-server's platform mode, which does
not (should not) know how to debug individual processes.
I'm putting it under Utility, as I think it can be generally useful for
notifying about unsupported/unimplemented functionality (and in
particular, for programatically testing whether something is
unsupported).
Differential Revision: https://reviews.llvm.org/D89121
The OS version field is generally not very helpful for non-Darwin
targets. On Linux, it identifies the kernel version which moves
out-of-sync with the userspace. On Windows, this field actually ends up
corresponding to the Visual Studio toolset version instead of the OS
version. Consider non-Darwin targets without an OS version to be fully
specified.
Differential Revision: https://reviews.llvm.org/D88181
Reviewed By: Jonas Devlieghere, Dave Lee
Translating between JSON objects and C++ strutctures is common.
From experience in clangd, fromJSON/ObjectMapper work well and save a lot of
code, but aren't adopted elsewhere at least partly due to total lack of error
reporting beyond "ok"/"bad".
The recently-added error model should be rich enough for most applications.
It requires tracking the path within the root object and reporting local
errors at appropriate places.
To do this, we exploit the fact that the call graph of recursive
parse functions mirror the structure of the JSON itself.
The current path is represented as a linked list of segments, each of which is
on the stack as a parameter. Concretely, fromJSON now looks like:
bool fromJSON(const Value&, T&, Path);
Beyond the signature change, this is reasonably unobtrusive: building
the path segments is mostly handled by ObjectMapper and the vector<T> fromJSON.
However the root caller of fromJSON must now create a Root object to
store the errors, which is a little clunky.
I've added high-level parse<T>(StringRef) -> Expected<T>, but it's not
general enough to be the primary interface I think (at least, not usable in
clangd).
All existing users (mostly just clangd) are updated in this patch,
making this change backwards-compatible is a bit hairy.
Differential Revision: https://reviews.llvm.org/D88103
This is the first in a series of patches that will adds a new processor trace plug-in to LLDB.
The idea for this first patch to to add the plug-in interface with simple commands for the trace files that can "load" and "dump" the trace information. We can test the functionality and ensure people are happy with the way things are done and how things are organized before moving on to adding more functionality.
Processor trace information can be view in a few different ways:
- post mortem where a trace is saved off that can be viewed later in the debugger
- gathered while a process is running and allow the user to step back in time (with no variables, memory or registers) to see how each thread arrived at where it is currently stopped.
This patch attempts to start with the first solution of loading a trace file after the fact. The idea is that we will use a JSON file to load the trace information. JSON allows us to specify information about the trace like:
- plug-in name in LLDB
- path to trace file
- shared library load information so we can re-create a target and symbolicate the information in the trace
- any other info that the trace plug-in will need to be able to successfully parse the trace information
- cpu type
- version info
- ???
A new "trace" command was added at the top level of the LLDB commmands:
- "trace load"
- "trace dump"
I did this because if we load trace information we don't need to have a process and we might end up creating a new target for the trace information that will become active. If anyone has any input on where this would be better suited, please let me know. Walter Erquinigo will end up filling in the Intel PT specific plug-in so that it works and is tested once we can agree that the direction of this patch is the correct one, so please feel free to chime in with ideas on comments!
Reviewed By: clayborg
Differential Revision: https://reviews.llvm.org/D85705
Add a reproducer verifier that catches:
- Missing or invalid home directory
- Missing or invalid working directory
- Missing or invalid module/symbol paths
- Missing files from the VFS
The verifier is enabled by default during replay, but can be skipped by
passing --reproducer-no-verify.
Differential revision: https://reviews.llvm.org/D86497
Add a reproducer verifier that catches:
- Missing or invalid home directory
- Missing or invalid working directory
- Missing or invalid module/symbol paths
- Missing files from the VFS
The verifier is enabled by default during replay, but can be skipped by
passing --reproducer-no-verify.
Differential revision: https://reviews.llvm.org/D86497
This patch is mostly about removing the "Category" enum, which was
very useful when the Type enum contained a large number of types, but
now the two are completely identical.
It also removes some other artifacts like unused typedefs and macros.
Specify type when constructing PromotionKeys,
this fixes error:
"chosen constructor is explicit in copy-initialization"
when compiling lldb with GCC 5.4.0.
This is due to std::tuple having an explicit
default constructor, see:
http://cplusplus.github.io/LWG/lwg-defects.html#2193
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D86690
When replaying a reproducer captured from a core file, we always use
dsymForUUID for the kernel binary. When enabled, we also use it to find
kexts. Since these files are already contained in the reproducer,
there's no reason to call out to an external tool. If the tool returns a
different result, e.g. because the dSYM got garbage collected, it will
break reproducer replay. The SymbolFileProvider solves the issue by
mapping UUIDs to module and symbol paths in the reproducer.
Differential revision: https://reviews.llvm.org/D86389
1. Extended the gdb-remote communication related classes with disk file/directory
completion functions;
2. Added two common completion functions RemoteDiskFiles and
RemoteDiskDirectories based on the functions above;
3. Added completion for these commands:
A. platform get-file <remote-file> <local-file>;
B. platform put-file <local-file> <remote-file>;
C. platform get-size <remote-file>;
D. platform settings -w <remote-dir>;
E. platform open file <remote-file>.
4. Added related tests for client and server;
5. Updated docs/lldb-platform-packets.txt.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D85284
Extract all the provider related logic from Reproducer.h and move it
into its own header ReproducerProvider.h. These classes are seeing most
of the development these days and this reorganization reduces
incremental compilation from ~520 to ~110 files when making changes to
the new header.
When replaying the reproducer, lldb should source the .lldbinit file
that was captured by the reproducer and not the one in the current home
directory. This requires that we store the home directory as part of the
reproducer. By returning the virtual home directory during replay, we
ensure the correct virtual path gets constructed which the VFS can then
find and remap to the correct file in the reproducer root.
This patch adds a new HomeDirectoryProvider, similar to the existing
WorkingDirectoryProvider. As the home directory is not part of the VFS,
it is stored in LLDB's FileSystem instance.
Similarly to D85836, collapse all Scalar float types to a single enum
value, and use APFloat semantics to differentiate between. This
simplifies the code, and opens to door to supporting other floating
point semantics (which would be needed for fully supporting
architectures with more interesting float types such as PPC).
Differential Revision: https://reviews.llvm.org/D86220
The class contains an enum listing all host integer types as well as
some non-host types. This setup is a remnant of a time when this class
was actually implemented in terms of host integer types. Now that we are
using llvm::APInt, they are mostly useless and mean that each function
needs to enumerate all of these cases even though it treats most of them
identically.
I only leave e_sint and e_uint to denote the integer signedness, but I
want to remove that in a follow-up as well.
Removing these cases simplifies most of these functions, with the only
exception being PromoteToMaxType, which can no longer rely on a simple
enum comparison to determine what needs to be promoted.
This also makes the class ready to work with arbitrary integer sizes, so
it does not need to be modified when someone needs to add a larger
integer size.
Differential Revision: https://reviews.llvm.org/D85836
The function had very complicated signature, because it was trying to
avoid making unnecessary copies of the Scalar object. However, this
class is not hot enough to worry about these kinds of optimizations. My
making copies unconditionally, we can simplify the function and all of
its call sites.
Differential Revision: https://reviews.llvm.org/D85906
The code in ObjectFileMachO didn't disambiguate between ios and
ios-simulator object files for Mach-O objects using the legacy
ambiguous LC_VERSION_MIN load commands. This used to not matter before
taught ArchSpec that ios and ios-simulator are no longer compatible.
rdar://problem/66545307
Differential Revision: https://reviews.llvm.org/D85358
Summary:
Initially, Apple simulator binarie triples didn't use a `-simulator`
environment and were just differentiated based on the architecture.
For example, `x86_64-apple-ios` would obviously be a simualtor as iOS
doesn't run on x86_64. With Catalyst, we made the disctinction
explicit and today, all simulator triples (even the legacy ones) are
constructed with an environment. This is especially important on Apple
Silicon were the architecture is not different from the one of the
simulated device.
This change makes the simulator part of the environment always part of
the criteria to detect whether 2 `ArchSpec`s are equal or compatible.
Reviewers: aprantl
Subscribers: inglorion, dexonsmith, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D84716
This reverts "Eliminate unneeded value parameters in Utility" for
ConstString. As Pavel pointed out on the mailing list, the class *is*
trivially copyable.
RecordInterestingDirectory was added to collect dSYM bundles and their
content. For the current working directory we only want the directory to
be part of the VFS, not necessarily its contents. This patch renames the
current method to RecordInterestingDirectoryRecursively and adds a new
one that's not recursive.
The function was fairly complicated and didn't support new bigger
integer sizes. Use llvm function for loading an APInt from memory to
write a unified implementation for all sizes.
The function's reliance on host types meant that it was needlessly
complicated, and did not handle the newer (wider) types. Rewrite it in
terms of APInt/APFloat functions to save code and improve functionality.
This patch does several things that are all closely related:
- It introduces a new YamlRecorder as a counterpart to the existing
DataRecorder. As the name suggests the former serializes data as yaml
while the latter uses raw texts or bytes.
- It introduces a new MultiProvider base class which can be backed by
either a DataRecorder or a YamlRecorder.
- It reimplements the CommandProvider in terms of the new
MultiProvider.
Finally, it adds unit testing coverage for the MultiProvider, a naive
YamlProvider built on top of the new YamlRecorder and the existing
MutliLoader.
Differential revision: https://reviews.llvm.org/D83441